implemented animation on xTask

animation
Sara 2023-09-27 14:59:03 +02:00
parent 32705f0f50
commit bfcf343447
3 changed files with 132 additions and 44 deletions

View File

@ -7,6 +7,7 @@
#ifndef _potion_leds_h #ifndef _potion_leds_h
#define _potion_leds_h #define _potion_leds_h
#include <FreeRTOS.h>
#include <stdint.h> #include <stdint.h>
#include <stddef.h> #include <stddef.h>
#include <unistd.h> #include <unistd.h>
@ -16,6 +17,12 @@
#include "rom/ets_sys.h" #include "rom/ets_sys.h"
#include "driver/gpio.h" #include "driver/gpio.h"
enum leds_send_state_t {
LEDS_SEND_WAITING,
LEDS_SEND_REQUESTED,
LEDS_SENDING,
};
// pack the struct to match exactly 8 * 4 = 32bits // pack the struct to match exactly 8 * 4 = 32bits
struct __attribute__((__packed__)) led_components_t { struct __attribute__((__packed__)) led_components_t {
// RGB component values // RGB component values
@ -47,13 +54,17 @@ struct gradient_t {
}; };
// buffer that will be written out to the led strip over serial // buffer that will be written out to the led strip over serial
uint32_t g_serial_out_buffer[62]; uint32_t g_serial_out_buffer[122];
// 60-long slice of the out buffer that represents the first few leds // 120-long slice of the out buffer that represents the first few leds
union led_t* g_leds = ((union led_t*)g_serial_out_buffer + 1); union led_t* g_leds = ((union led_t*)g_serial_out_buffer + 1);
struct gradient_t g_default_gradient; struct gradient_t g_default_gradient;
struct gradient_t g_current_gradient; struct gradient_t g_current_gradient;
int g_leds_are_default = 1; int g_leds_are_default = 1;
enum leds_send_state_t g_leds_send_state = LEDS_SEND_WAITING;
SemaphoreHandle_t g_led_mutex; // mutex governing access to data for leds
// use for all global data defined in this header
#define CLOCK 4 #define CLOCK 4
#define DATA 5 #define DATA 5
@ -73,31 +84,26 @@ void leds_config_gpio() {
static static
void serial_write(int high) { void serial_write(int high) {
// set clock out to high, triggering a rising edge // set clock out to high, triggering a rising edge
gpio_set_level(CLOCK, 1); gpio_set_level(CLOCK, 1);
// write bit to data out // write bit to data out
gpio_set_level(DATA, high); gpio_set_level(DATA, high);
os_delay_us(2); ets_delay_us(1);
// set clock to low, triggering a falling edge, shifting the LEDs shift register
gpio_set_level(CLOCK, 0); // set clock to low, triggering a falling edge, shifting the LEDs shift register
gpio_set_level(CLOCK, 0);
} }
static static
void send_leds() { void send_leds() {
LOGLN("entering send_leds()");
// index of the bit being written // index of the bit being written
// fixed point number where the first 5 bits are the bit of a 32bit integger, and the rest is the integer // fixed point number where the first 5 bits are the bit of a 32bit integger, and the rest is the integer
int write_bit = 0; int write_bit = 0;
int write_next = 0; int write_next = 0;
LOGLN("Setting clock low");
gpio_set_level(CLOCK, 0); gpio_set_level(CLOCK, 0);
LOGLN("Writing to leds");
while(write_bit < sizeof(g_serial_out_buffer) * 8) { while(write_bit < sizeof(g_serial_out_buffer) * 8) {
// fetch the bit being addressed // fetch the bit being addressed
write_next = 0x1 & (g_serial_out_buffer[write_bit >> 5] >> (32 - (write_bit & 0x1F))); write_next = 0x1 & (g_serial_out_buffer[write_bit >> 5] >> (32 - (write_bit & 0x1F)));
@ -160,7 +166,7 @@ void leds_set_current_gradient(const struct gradient_t* gradient, int defer_send
struct gradient_point_t to; struct gradient_point_t to;
set_led_range(0, gradient->points[0].offset, gradient->points[0].led); set_led_range(0, gradient->points[0].offset, gradient->points[0].led);
set_led_range(gradient->points[gradient->points_len-1].offset, 60, gradient->points[gradient->points_len-1].led); set_led_range(gradient->points[gradient->points_len-1].offset, 120, gradient->points[gradient->points_len-1].led);
g_current_gradient = *gradient; g_current_gradient = *gradient;
@ -175,11 +181,71 @@ void leds_set_current_gradient(const struct gradient_t* gradient, int defer_send
} }
} }
void memswap(void* d, void* s, size_t n) {
void* tmp = malloc(n);
memcpy(tmp, s, n);
memcpy(s, d, n);
memcpy(d, tmp, n);
free(tmp);
}
void leds_animate() {
for(size_t i = 0; i < g_current_gradient.points_len; ++i) {
struct gradient_point_t* point = g_current_gradient.points + i;
if(point->movement > 0) {
point->offset = min(point->offset + 1, 120);
LOGLN("move result %i", point->offset);
LOGLN("next %d", (point+1)->offset);
if(point->offset > (point+1)->offset) {
memswap(point, point+1, sizeof(struct gradient_point_t));
LOGLN("swap down");
}
} else if(point->movement < 0) {
point->offset = max(0, point->offset - 1);
LOGLN("move result %i", point->offset);
LOGLN("next %d", (point-1)->offset);
if(point->offset < (point-1)->offset) {
memswap(point, point-1, sizeof(struct gradient_point_t));
LOGLN("swap up");
}
}
}
leds_set_current_gradient(&g_current_gradient, 1);
}
struct led_thread_data_t {
TaskHandle_t task;
TaskFunction_t func;
};
static void leds_thread();
static struct led_thread_data_t _thread_data = {
.task = 0,
.func = &leds_thread
};
static
void leds_thread() {
send_leds();
for(;;) {
vTaskDelay(10);
xSemaphoreTake(g_led_mutex, portMAX_DELAY);
send_leds();
leds_animate();
xSemaphoreGive(g_led_mutex);
}
}
static static
void leds_init() { void leds_init() {
g_serial_out_buffer[0] = 0u; g_serial_out_buffer[0] = 0u;
g_serial_out_buffer[61] = ~0u; g_serial_out_buffer[61] = ~0u;
set_led_range(0, 60, set_led_range(0, 120,
(union led_t){.components = (union led_t){.components =
(struct led_components_t) { (struct led_components_t) {
.red = 0, .red = 0,
@ -189,6 +255,11 @@ void leds_init() {
}} }}
); );
g_led_mutex = xSemaphoreCreateMutex();
xTaskCreate(_thread_data.func, "Leds", 1024, NULL, 1, &_thread_data.task);
// initialize mutex for leds data
leds_config_gpio(); leds_config_gpio();
} }

View File

@ -30,39 +30,51 @@ void TEST_leds() {
} }
}; };
set_led_range(0, 60, led); set_led_range(0, 120, led);
led.components.blue = 255; led.components.blue = 255;
set_led_range(30, 60, led); set_led_range(60, 120, led);
send_leds(); send_leds();
sleep(1); sleep(1);
struct gradient_point_t points[3]; struct gradient_t gradient;
points[0].offset = 0; gradient.points_len = 4;
points[0].led.components = (struct led_components_t) {
.global = GLOBAL(10), gradient.points[0].offset = 0;
.red = 200, gradient.points[0].movement = 0;
gradient.points[0].led.components = (struct led_components_t) {
.global = GLOBAL(0),
.red = 0,
.green = 0, .green = 0,
.blue = 40, .blue = 0,
}; };
points[1].offset = 30; gradient.points[1].offset = 59;
points[1].led.components = (struct led_components_t){ gradient.points[1].movement = -1;
gradient.points[1].led.components = (struct led_components_t){
.global = GLOBAL(10), .global = GLOBAL(10),
.red = 40, .red = 40,
.green = 30, .green = 200,
.blue = 40, .blue = 40,
}; };
gradient.points[2].offset = 61;
points[2].offset = 60; gradient.points[2].movement = 1;
points[2].led.components = (struct led_components_t){ gradient.points[2].led.components = (struct led_components_t){
.global = GLOBAL(10), .global = GLOBAL(10),
.red = 200, .red = 40,
.green = 255, .green = 200,
.blue = 255, .blue = 40,
};
gradient.points[3].offset = 120;
gradient.points[3].movement = 0;
gradient.points[3].led.components = (struct led_components_t){
.global = GLOBAL(0),
.red = 0,
.green = 0,
.blue = 0,
}; };
leds_set_gradient(points, 3, 1); leds_set_current_gradient(&gradient, 0);
} }
void app_main(void) { void app_main(void) {

View File

@ -1,16 +1,14 @@
/// ///
//
// server.h // server.h
// Call server_init() to start up an http webserver. // Call server_init() to start up an http webserver.
// listens on '/' for GET queries with a url query format like // Listens on '/' for GET queries with a url query format like
// ?l=*&r0=*&g0=*&b0=*&a0=*&t0=* ... &rl=*&gl=*&bl=*&al=*&tl=* // ?l=*&r0=*&g0=*&b0=*&a0=*&t0=* ... &rl=*&gl=*&bl=*&al=*&tl=*
// Where l is the number of points on a gradient. And each point of the gradient has a r* g* b* a* and t* where * is the index. // Where l is the number of points on a gradient. And each point of the gradient has a r* g* b* a* and t* where * is the index.
// r g and b are the red green and blue 8-bit colour components of a point on the gradient. A is the 5-bit global component of the led at that point. // r g and b are the red green and blue 8-bit colour components of a point on the gradient. A is the 5-bit global component of the led at that point.
// t is the offset from the start measured in leds. // t is the offset from the start measured in leds.
// Each point also has an optional &m argument for movement. &m should be either -1, +1 or 0 and represents the movement per frame or the point. // Each point also has an optional &m 'movement' argument. &m should be either -1, +1 or 0 and represents the movement per frame or the point.
// &m arguments are only valid if the global &d variable is also defined. // A point on the gradient can have an &m parameter, and has to have a &r, &g, &b, &a, and &t.
// So if &d is defined (say, &d=3) a point on the gradient will have &r, &g, &b, &a, &t, and &m. And the global variables will be &l and &d // The whole gradient can have a duration &d parameter and must have a length &l
//
/// ///
#ifndef _potion_party_server_h #ifndef _potion_party_server_h
@ -99,11 +97,11 @@ struct parse_error_t parse_leds_query(char* query_string, size_t query_size) {
.error = "ERROR: Point missing alpha component &a." .error = "ERROR: Point missing alpha component &a."
}; };
} }
// Get the time of the gradient as a number ranging from 0 - 60. // Get the time of the gradient as a number ranging from 0 - 120.
// Interpreted as an integer offset from the first led to the last // Interpreted as an integer offset from the first led to the last
sprintf(query_key, "t%d", point); sprintf(query_key, "t%d", point);
if(httpd_query_key_value(query_string, query_key, query_value, sizeof(query_value)) == ESP_OK) { if(httpd_query_key_value(query_string, query_key, query_value, sizeof(query_value)) == ESP_OK) {
gradient.points[point].offset = clamp(0, 60, atoi(query_value)); gradient.points[point].offset = clamp(0, 120, atoi(query_value));
} else { } else {
return (struct parse_error_t) { return (struct parse_error_t) {
.error = "ERROR: Point missing time component &t." .error = "ERROR: Point missing time component &t."
@ -124,10 +122,17 @@ struct parse_error_t parse_leds_query(char* query_string, size_t query_size) {
LOGLN(" g %d", gradient.points[point].led.components.green); LOGLN(" g %d", gradient.points[point].led.components.green);
LOGLN(" b %d", gradient.points[point].led.components.blue); LOGLN(" b %d", gradient.points[point].led.components.blue);
LOGLN(" global %d", gradient.points[point].led.components.global >> 3); LOGLN(" global %d", gradient.points[point].led.components.global >> 3);
LOGLN(" t %zu", gradient.points[point].offset); // may show up as a compile error on modern computers,
// x86_64 size_t is usually an unsigned long int, on the ESP8266 it is an unsigned int
LOGLN(" t %u", gradient.points[point].offset);
} }
xSemaphoreTake(g_led_mutex, portMAX_DELAY);
leds_set_current_gradient(&gradient, 0); leds_set_current_gradient(&gradient, 0);
xSemaphoreGive(g_led_mutex);
return (struct parse_error_t) { .error = NULL }; return (struct parse_error_t) { .error = NULL };
} }