Merge pull request 'split-world-module' (#9) from split-world-module into main

Reviewed-on: #9
main
Sara 2023-06-24 20:09:34 +00:00
commit 78d1e78dd7
9 changed files with 380 additions and 349 deletions

16
src/corelib/object.c Normal file
View File

@ -0,0 +1,16 @@
#include "object.h"
object_t object_default() {
return (object_t){
.active = 1,
.enabled = 1,
.collider = collider_default(),
.evt_draw = &object_draw_sprite,
.evt_update = NULL,
.sprite = sprite_default(),
};
}
void object_draw_sprite(object_t* object) {
draw_sprite(&object->sprite);
}

29
src/corelib/object.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef _object_h
#define _object_h
#include "render.h"
#include "physics.h"
typedef struct object_t object_t;
typedef struct collider_t collider_t;
typedef void(*tick_fn)(struct object_t*);
typedef void(*draw_fn)(struct object_t*);
struct object_t {
sprite_t sprite;
int active; // 1 if this object is in use and should not be overriden.
int enabled; // 1 if this object's events should be triggered.
collider_t collider; // the collider to use for this object's physics interaction.
uintptr_t timer; // free to use for whatever
tick_fn evt_update;
draw_fn evt_draw;
};
object_t object_default();
void object_draw_sprite(object_t* object);
#endif /* _object_h */

269
src/corelib/physics.c Normal file
View File

@ -0,0 +1,269 @@
#include "physics.h"
#include "object.h"
#include "world.h"
#include "math/vec.h"
static inline
float fclampf(float x, float min_, float max_) {
return fminf(max_, fmaxf(min_, x));
}
collider_t collider_default() {
return (collider_t) {
.type=COLLIDERTYPE_NONE
};
}
void object_broadcast_collision(object_t* this, object_t* other) {
if(this->collider.evt_collision != NULL) {
this->collider.evt_collision(this, other);
}
}
short can_collide(const object_t* this) {
return this->active && this->enabled;
}
static inline
int _rect_overlap(float aminx, float aminy, float amaxx, float amaxy, float bminx, float bminy, float bmaxx, float bmaxy) {
return
(
(aminx < bmaxx && aminx > bmaxx)
||
(amaxx > bminx && amaxx < bmaxx)
) && (
(aminy < bmaxy && aminy > bmaxy)
||
(amaxy > bminy && amaxy < bmaxy)
);
}
static inline
short _collision_aabb_aabb(const object_t* a, const object_t* b) {
const float aminx = a->collider.aabb.x + a->sprite.x, aminy = a->collider.aabb.y + a->sprite.x;
const float amaxx = aminx + a->collider.aabb.w, amaxy = aminy + a->collider.aabb.h;
const float bminx = b->collider.aabb.x, bminy = b->collider.aabb.y;
const float bmaxx = b->collider.aabb.x + b->collider.aabb.w, bmaxy = b->collider.aabb.y + b->collider.aabb.h;
return _rect_overlap(aminx, aminy, amaxx, amaxy, bminx, bminy, bmaxx, bmaxy);
}
static inline
short _collision_circle_circle(const object_t* a, const object_t* b) {
const float ax = a->sprite.x + a->collider.circle.x, ay = a->sprite.y + a->collider.circle.y,
bx = b->sprite.x + b->collider.circle.x, by = b->sprite.y + b->collider.circle.y;
const float dx = fabsf(ax-bx), dy = fabsf(ay-by);
const float sqrdist = dx*dx+dy*dy;
const float mindist = a->collider.circle.radius + b->collider.circle.radius;
const float mindistsqr = mindist*mindist;
return sqrdist < mindistsqr;
}
static inline
short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
// generate a point on the edge of the rectangle that is closest to the circle
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
const float cx = circle->sprite.x + circle->collider.circle.x,
cy = circle->sprite.y + circle->collider.circle.y;
const float x = fclampf(cx, bbminx, bbmaxx),
y = fclampf(cy, bbminy, bbmaxy);
const float dx = fabsf(cx - x), dy = fabsf(cy - y);
// calculate the square distance from the centre of the circle to the edge of the aabb
const float distsqr = dx*dx+dy*dy;
const float rsqr = circle->collider.circle.radius*circle->collider.circle.radius;
// return if the square distance is larger than the square of the radius
return distsqr < rsqr;
}
static inline
short _collision_check(const object_t* a, const object_t* b) {
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
return _collision_aabb_aabb(a, b);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _collision_circle_circle(a, b);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
return _collision_circle_aabb(a, b);
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _collision_circle_aabb(b, a);
}
return 0;
}
static inline
float _solve_circle_aabb(const object_t* circle, const object_t* aabb, float* out_px, float* out_py) {
// generate a point on the edge of the rectangle that is closest to the circle
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
// the centre of the circle in world space
const float cx = circle->sprite.x + circle->collider.circle.x,
cy = circle->sprite.y + circle->collider.circle.y;
// the point on the rectangle closest to the centre of the circle
const float x = fclampf(cx, bbminx, bbmaxx),
y = fclampf(cy, bbminy, bbmaxy);
// the relative position of the point on the rectangle
const float dif_x = cx - x,
dif_y = cy - y;
// absolute difference for use in calculating euclidean distance
const float dist_x = fabsf(dif_x),
dist_y = fabsf(dif_y);
// euclidean distance
const float dist = sqrt(dist_x*dist_x + dist_y*dist_y);
const float solve_distance = circle->collider.circle.radius - dist;
// distance to solve collision
float solve_x, solve_y;
normalize(dif_x, dif_y, &solve_x, &solve_y);
*out_px = solve_x * solve_distance;
*out_py = solve_y * solve_distance;
return solve_distance;
}
static inline
float _solve_circle_circle(const object_t* a, const object_t* b, float* out_px, float* out_py) {
const float x1 = a->collider.circle.x + a->sprite.x, y1 = a->collider.circle.y + a->sprite.y;
const float x2 = b->collider.circle.x + b->sprite.x, y2 = b->collider.circle.y + b->sprite.y;
const float dif_x = x1 - x2, dif_y = y1 - y2;
const float difference = sqrtf(fabsf(dif_x*dif_x) + fabsf(dif_y*dif_y));
const float target_difference = a->collider.circle.radius + b->collider.circle.radius;
float dir_x, dir_y;
normalize(dif_x, dif_y, &dir_x, &dir_y);
*out_px = dir_x * target_difference;
*out_py = dir_y * target_difference;
return target_difference;
}
static inline
float _solve_aabb_aabb(const object_t* a, const object_t* b, float* out_px, float* out_py) {
float right = (a->collider.aabb.x + a->collider.aabb.w + a->sprite.x) - (b->collider.aabb.x + b->sprite.x);
float left = (a->collider.aabb.x + a->sprite.x) - (b->collider.aabb.x + b->collider.aabb.w + b->sprite.x);
float top = (a->collider.aabb.y + a->sprite.y) - (b->collider.aabb.y + b->collider.aabb.w + b->sprite.y);
float bottom = (a->collider.aabb.y + a->collider.aabb.h) - (b->collider.aabb.y + b->sprite.y);
float ret = right;
*out_px = right;
*out_py = 0.f;
if(fabsf(left) < fabsf(ret)) {
*out_px = left;
*out_py = 0.f;
ret = left;
}
if(fabsf(top) < fabsf(ret)) {
*out_px = 0.f;
*out_py = top;
ret = top;
}
if(fabsf(bottom) < fabsf(ret)) {
*out_px = 0.f;
*out_py = bottom;
return bottom;
}
return ret;
}
float get_solve_force(const object_t* a, const object_t* b, float* out_px, float* out_py) {
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
return _solve_aabb_aabb(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
float penetration_distance = _solve_circle_aabb(b, a, out_px, out_py);
*out_px = -(*out_px);
*out_py = -(*out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
return _solve_circle_aabb(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _solve_circle_circle(a, b, out_px, out_py);
}
}
static inline
void _solve_collision_slide(object_t* this, object_t* other, float old_x, float old_y, float new_x, float new_y) {
float dx, dy;
const float d = get_solve_force(this, other, &dx, &dy);
this->sprite.x += dx;
this->sprite.y += dy;
return;
this->sprite.x = old_x;
this->sprite.y = new_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = new_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = old_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
}
void interpolate_move(object_t* object, const float target_x, const float target_y, const float max_step_size, const int slide) {
// calculate step delta
float dx = target_x - object->sprite.x, dy = target_y - object->sprite.y;
if(dx == 0 && dy == 0)
return;
// calculate direction x,y
float m = sqrtf(dx*dx + dy*dy);
if(dx != 0)
dx /= m;
if(dy != 0)
dy /= m;
dx *= max_step_size; dy *= max_step_size;
int step_count = max_step_size / m;
// ensure this object would ever collide
// if it wouldn't collide anyway, just set position
if(!can_collide(object)) {
object->sprite.x = target_x;
object->sprite.y = target_y;
return;
}
/*
* 1. move towards target
* 2. check collision with every other object
*/
for(int steps = 0; steps < step_count && (object->sprite.x != target_x || object->sprite.y != target_y); ++steps) {
// move towards target, snap to target if distance is too low
const float old_x = object->sprite.x, old_y = object->sprite.y;
float new_x, new_y;
const float distx = fabsf(object->sprite.x - target_x), disty = fabsf(object->sprite.y - target_y);
const float sqdist = distx*distx + disty*disty;
if(sqdist > max_step_size) {
object->sprite.x += dx;
object->sprite.y += dy;
new_x = object->sprite.x;
new_y = object->sprite.y;
} else {
new_x = object->sprite.x = target_x;
new_y = object->sprite.y = target_y;
}
// loop over all objects and check collision if applicable
for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) {
// get pointer to other object
object_t* other = g_objects + i;
// check collision, return if found
if(can_collide(other) && object != other && _collision_check(other, object)) {
object_broadcast_collision(other, object);
object_broadcast_collision(object, other);
if(slide) {
_solve_collision_slide(object, other, old_x, old_y, new_x, new_y);
} else {
object->sprite.x = old_x;
object->sprite.y = old_y;
return;
}
}
}
}
}

41
src/corelib/physics.h Normal file
View File

@ -0,0 +1,41 @@
#ifndef _physics_h
#define _physics_h
#include "SDL2/SDL_rect.h"
typedef struct object_t object_t;
typedef void(*collided_fn)(object_t*, struct object_t*);
typedef enum collider_type_t {
COLLIDERTYPE_MIN,
COLLIDERTYPE_NONE,
COLLIDERTYPE_CIRCLE,
COLLIDERTYPE_AABB,
COLLIDERTYPE_MAX,
} collider_type_t;
typedef struct collider_t {
collider_type_t type;
collided_fn evt_collision;
union {
struct {
float x, y;
float radius;
} circle;
SDL_FRect aabb;
};
} collider_t;
collider_t collider_default();
void object_broadcast_evt_collision(object_t* this, object_t* other);
void physics_update();
void interpolate_move(object_t* object, float target_x, float target_y, float max_step_size, int slide);
extern short can_collide(const object_t* this);
extern float get_solve_force(const object_t* this, const object_t* other, float* solve_x, float* solve_y);
#endif /* _physics_h */

View File

@ -253,6 +253,19 @@ void _exec_text_cmd(const drawcmd_t* cmd) {
free(cmd->text.text); free(cmd->text.text);
} }
sprite_t sprite_default() {
return (sprite_t){
.texture = NULL,
.x = 0.f, .y = 0.f,
.origin = (SDL_FPoint){0.f, 0.f},
.sx = 1.f, .sy = 1.f,
.rot = 0.f,
.depth = RLAYER_SPRITES,
.uv = (SDL_Rect){0.f, 0.f, 0.f, 0.f},
.flip = SDL_FLIP_NONE,
};
}
sprite_t render_text(const char* str, SDL_FRect area, text_style_t style) { sprite_t render_text(const char* str, SDL_FRect area, text_style_t style) {
SDL_FRect r = area; SDL_FRect r = area;
int fh = TTF_FontHeight(style.font); int fh = TTF_FontHeight(style.font);

View File

@ -91,6 +91,8 @@ extern void screen_to_view(float* x, float* y);
extern void clear_buffer(); extern void clear_buffer();
extern void swap_buffer(); extern void swap_buffer();
extern sprite_t sprite_default();
extern sprite_t render_text(const char* str, SDL_FRect area, text_style_t style); extern sprite_t render_text(const char* str, SDL_FRect area, text_style_t style);
extern void draw_sprite(const sprite_t* sprite); extern void draw_sprite(const sprite_t* sprite);
extern void draw_rect(const rectshape_t* rect); extern void draw_rect(const rectshape_t* rect);

View File

@ -10,10 +10,6 @@ void world_clear() {
} }
} }
void object_draw_sprite(object_t* object) {
draw_sprite(&object->sprite);
}
object_t* _find_free_object() { object_t* _find_free_object() {
for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) { for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) {
if(g_objects[i].active == 0) { if(g_objects[i].active == 0) {
@ -25,12 +21,7 @@ object_t* _find_free_object() {
object_t* make_object() { object_t* make_object() {
object_t* o = _find_free_object(); object_t* o = _find_free_object();
o->active = 1; *o = object_default();
o->enabled = 1;
o->collider = collider_default();
o->evt_draw = &object_draw_sprite;
o->evt_update = NULL;
memset(&o->sprite, 0, sizeof(sprite_t));
return o; return o;
} }
@ -41,13 +32,7 @@ object_t* instantiate_object(const object_t *original) {
return obj; return obj;
} }
collider_t collider_default() { void world_update() {
return (collider_t) {
.type=COLLIDERTYPE_NONE
};
}
void update_objects() {
for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) { for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) {
if(g_objects[i].active == 1 if(g_objects[i].active == 1
&& g_objects[i].enabled == 1 && g_objects[i].enabled == 1
@ -57,7 +42,7 @@ void update_objects() {
} }
} }
void draw_objects() { void world_draw() {
for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) { for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) {
if(g_objects[i].active == 1 if(g_objects[i].active == 1
&& g_objects[i].enabled == 1 && g_objects[i].enabled == 1
@ -65,281 +50,4 @@ void draw_objects() {
g_objects[i].evt_draw(g_objects + i); g_objects[i].evt_draw(g_objects + i);
} }
} }
} }
static inline
int _rect_overlap(float aminx, float aminy, float amaxx, float amaxy, float bminx, float bminy, float bmaxx, float bmaxy) {
return
(
(aminx < bmaxx && aminx > bmaxx)
||
(amaxx > bminx && amaxx < bmaxx)
) && (
(aminy < bmaxy && aminy > bmaxy)
||
(amaxy > bminy && amaxy < bmaxy)
);
}
static inline
short _collision_aabb_aabb(const object_t* a, const object_t* b) {
const float aminx = a->collider.aabb.x + a->sprite.x, aminy = a->collider.aabb.y + a->sprite.x;
const float amaxx = aminx + a->collider.aabb.w, amaxy = aminy + a->collider.aabb.h;
const float bminx = b->collider.aabb.x, bminy = b->collider.aabb.y;
const float bmaxx = b->collider.aabb.x + b->collider.aabb.w, bmaxy = b->collider.aabb.y + b->collider.aabb.h;
return _rect_overlap(aminx, aminy, amaxx, amaxy, bminx, bminy, bmaxx, bmaxy);
}
static inline
short _collision_circle_circle(const object_t* a, const object_t* b) {
const float ax = a->sprite.x + a->collider.circle.x, ay = a->sprite.y + a->collider.circle.y,
bx = b->sprite.x + b->collider.circle.x, by = b->sprite.y + b->collider.circle.y;
const float dx = fabsf(ax-bx), dy = fabsf(ay-by);
const float sqrdist = dx*dx+dy*dy;
const float mindist = a->collider.circle.radius + b->collider.circle.radius;
const float mindistsqr = mindist*mindist;
return sqrdist < mindistsqr;
}
static inline
float fclampf(float x, float min_, float max_) {
return fminf(max_, fmaxf(min_, x));
}
static inline
float _circle_aabb_overlap(const object_t* circle, const object_t* aabb, float* out_px, float* out_py) {
// generate a point on the edge of the rectangle that is closest to the circle
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
// the centre of the circle in world space
const float cx = circle->sprite.x + circle->collider.circle.x,
cy = circle->sprite.y + circle->collider.circle.y;
// the point on the rectangle closest to the centre of the circle
const float x = fclampf(cx, bbminx, bbmaxx),
y = fclampf(cy, bbminy, bbmaxy);
// the relative position of the point on the rectangle
const float dif_x = cx - x,
dif_y = cy - y;
// absolute difference for use in calculating euclidean distance
const float dist_x = fabsf(dif_x),
dist_y = fabsf(dif_y);
// euclidean distance
const float dist = sqrt(dist_x*dist_x + dist_y*dist_y);
const float solve_distance = circle->collider.circle.radius - dist;
// distance to solve collision
float solve_x, solve_y;
normalize(dif_x, dif_y, &solve_x, &solve_y);
*out_px = solve_x * solve_distance;
*out_py = solve_y * solve_distance;
return solve_distance;
}
static inline
float _circle_circle_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
const float x1 = a->collider.circle.x + a->sprite.x, y1 = a->collider.circle.y + a->sprite.y;
const float x2 = b->collider.circle.x + b->sprite.x, y2 = b->collider.circle.y + b->sprite.y;
const float dif_x = x1 - x2, dif_y = y1 - y2;
const float difference = sqrtf(fabsf(dif_x*dif_x) + fabsf(dif_y*dif_y));
const float target_difference = a->collider.circle.radius + b->collider.circle.radius;
float dir_x, dir_y;
normalize(dif_x, dif_y, &dir_x, &dir_y);
*out_px = dir_x * target_difference;
*out_py = dir_y * target_difference;
return target_difference;
}
static inline
float _aabb_aabb_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
float right = (a->collider.aabb.x + a->collider.aabb.w + a->sprite.x) - (b->collider.aabb.x + b->sprite.x);
float left = (a->collider.aabb.x + a->sprite.x) - (b->collider.aabb.x + b->collider.aabb.w + b->sprite.x);
float top = (a->collider.aabb.y + a->sprite.y) - (b->collider.aabb.y + b->collider.aabb.w + b->sprite.y);
float bottom = (a->collider.aabb.y + a->collider.aabb.h) - (b->collider.aabb.y + b->sprite.y);
float ret = right;
*out_px = right;
*out_py = 0.f;
if(fabsf(left) < fabsf(ret)) {
*out_px = left;
*out_py = 0.f;
ret = left;
}
if(fabsf(top) < fabsf(ret)) {
*out_px = 0.f;
*out_py = top;
ret = top;
}
if(fabsf(bottom) < fabsf(ret)) {
*out_px = 0.f;
*out_py = bottom;
return bottom;
}
return ret;
}
static inline
float _get_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
return _aabb_aabb_overlap(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
float penetration_distance = _circle_aabb_overlap(b, a, out_px, out_py);
*out_px = -(*out_px);
*out_py = -(*out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
return _circle_aabb_overlap(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _circle_circle_overlap(a, b, out_px, out_py);
}
}
static inline
short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
// generate a point on the edge of the rectangle that is closest to the circle
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
const float cx = circle->sprite.x + circle->collider.circle.x,
cy = circle->sprite.y + circle->collider.circle.y;
const float x = fclampf(cx, bbminx, bbmaxx),
y = fclampf(cy, bbminy, bbmaxy);
const float dx = fabsf(cx - x), dy = fabsf(cy - y);
// calculate the square distance from the centre of the circle to the edge of the aabb
const float distsqr = dx*dx+dy*dy;
const float rsqr = circle->collider.circle.radius*circle->collider.circle.radius;
// return if the square distance is larger than the square of the radius
return distsqr < rsqr;
}
static inline
short _collision_check(const object_t* a, const object_t* b) {
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
return _collision_aabb_aabb(a, b);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _collision_circle_circle(a, b);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
return _collision_circle_aabb(a, b);
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _collision_circle_aabb(b, a);
}
return 0;
}
static inline
short _can_collide(const object_t* object) {
return object->active && object->enabled;
}
void object_broadcast_collision(object_t* this, object_t* other) {
if(this->collider.evt_collision != NULL) {
this->collider.evt_collision(this, other);
}
}
void update_collision() {
for(int outer = 0; outer < WORLD_NUM_OBJECTS; ++outer) {
object_t* oobject = g_objects + outer;
if(!_can_collide(oobject)) continue;
for(int inner = 0; inner < WORLD_NUM_OBJECTS; ++inner) {
object_t* iobject = g_objects + inner;
if(!_can_collide(oobject)) continue;
if(outer != inner && _collision_check(iobject, oobject)) {
object_broadcast_collision(oobject, iobject);
object_broadcast_collision(iobject, oobject);
}
}
}
}
static inline
void _slide_collision(object_t* this, object_t* other, float old_x, float old_y, float new_x, float new_y) {
float dx, dy;
const float d = _get_overlap(this, other, &dx, &dy);
this->sprite.x += dx;
this->sprite.y += dy;
return;
this->sprite.x = old_x;
this->sprite.y = new_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = new_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = old_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
}
void interpolate_move(object_t* object, const float target_x, const float target_y, const float max_step_size, const int slide) {
// calculate step delta
float dx = target_x - object->sprite.x, dy = target_y - object->sprite.y;
if(dx == 0 && dy == 0)
return;
// calculate direction x,y
float m = sqrtf(dx*dx + dy*dy);
if(dx != 0)
dx /= m;
if(dy != 0)
dy /= m;
dx *= max_step_size; dy *= max_step_size;
int step_count = max_step_size / m;
// ensure this object would ever collide
// if it wouldn't collide anyway, just set position
if(!_can_collide(object)) {
object->sprite.x = target_x;
object->sprite.y = target_y;
return;
}
/*
* 1. move towards target
* 2. check collision with every other object
*/
for(int steps = 0; steps < step_count && (object->sprite.x != target_x || object->sprite.y != target_y); ++steps) {
// move towards target, snap to target if distance is too low
const float old_x = object->sprite.x, old_y = object->sprite.y;
float new_x, new_y;
const float distx = fabsf(object->sprite.x - target_x), disty = fabsf(object->sprite.y - target_y);
const float sqdist = distx*distx + disty*disty;
if(sqdist > max_step_size) {
object->sprite.x += dx;
object->sprite.y += dy;
new_x = object->sprite.x;
new_y = object->sprite.y;
} else {
new_x = object->sprite.x = target_x;
new_y = object->sprite.y = target_y;
}
// loop over all objects and check collision if applicable
for(int i = 0; i < WORLD_NUM_OBJECTS; ++i) {
// get pointer to other object
object_t* other = g_objects + i;
// check collision, return if found
if(_can_collide(other) && object != other && _collision_check(other, object)) {
object_broadcast_collision(other, object);
object_broadcast_collision(object, other);
if(slide) {
_slide_collision(object, other, old_x, old_y, new_x, new_y);
} else {
object->sprite.x = old_x;
object->sprite.y = old_y;
return;
}
}
}
}
}

View File

@ -1,67 +1,20 @@
#ifndef _world_h #ifndef _world_h
#define _world_h #define _world_h
#include "render.h" #include "object.h"
#include <stdint.h>
#define WORLD_NUM_OBJECTS 255 #define WORLD_NUM_OBJECTS 255
typedef struct object_t object_t; typedef struct object_t object_t;
typedef void(*tick_fn)(struct object_t*);
typedef void(*draw_fn)(struct object_t*);
typedef void(*collided_fn)(struct object_t*, struct object_t*);
typedef enum collider_type_t {
COLLIDERTYPE_MIN,
COLLIDERTYPE_NONE,
COLLIDERTYPE_CIRCLE,
COLLIDERTYPE_AABB,
COLLIDERTYPE_MAX,
} collider_type_t;
typedef struct collider_t {
collider_type_t type;
collided_fn evt_collision;
union {
struct {
float x, y;
float radius;
} circle;
SDL_FRect aabb;
};
} collider_t;
struct object_t {
sprite_t sprite;
int active; // 1 if this object is in use and should not be overriden.
int enabled; // 1 if this object's events should be triggered.
collider_t collider; // the collider to use for this object's physics interaction.
uintptr_t timer; // free to use for whatever
tick_fn evt_update;
draw_fn evt_draw;
};
extern object_t g_objects[WORLD_NUM_OBJECTS]; extern object_t g_objects[WORLD_NUM_OBJECTS];
void world_clear();
object_t* make_object(); object_t* make_object();
object_t* instantiate_object(const object_t* original); object_t* instantiate_object(const object_t* original);
collider_t collider_default(); void world_clear();
void object_draw_sprite(object_t* object); void world_update();
void object_broadcast_evt_collision(object_t* this, object_t* other); void world_draw();
void update_objects();
void draw_objects();
void update_collision();
void interpolate_move(object_t* object, float target_x, float target_y, float max_step_size, int slide);
#endif /* _world_h */ #endif /* _world_h */

View File

@ -82,8 +82,8 @@ int _engine_run() {
update_ui(); update_ui();
_render_mode = 0; _render_mode = 0;
update_game(); update_game();
update_objects(); // update world objects world_update(); // update world objects
draw_objects(); // draw world objects world_draw(); // draw world objects
swap_buffer(); swap_buffer();
do { do {
timespec_get(&next_time, TIME_UTC); timespec_get(&next_time, TIME_UTC);