reworked collision_t component into physics_t component
parent
8a028dca08
commit
76bf6e81e5
|
@ -4,7 +4,7 @@ object_t object_default() {
|
||||||
return (object_t){
|
return (object_t){
|
||||||
.active = 1,
|
.active = 1,
|
||||||
.enabled = 1,
|
.enabled = 1,
|
||||||
.collider = collider_default(),
|
.physics = physics_default(),
|
||||||
.evt_draw = &object_draw_sprite,
|
.evt_draw = &object_draw_sprite,
|
||||||
.evt_update = NULL,
|
.evt_update = NULL,
|
||||||
.sprite = sprite_default(),
|
.sprite = sprite_default(),
|
||||||
|
|
|
@ -5,7 +5,6 @@
|
||||||
#include "physics.h"
|
#include "physics.h"
|
||||||
|
|
||||||
typedef struct object_t object_t;
|
typedef struct object_t object_t;
|
||||||
typedef struct collider_t collider_t;
|
|
||||||
|
|
||||||
typedef void(*tick_fn)(struct object_t*);
|
typedef void(*tick_fn)(struct object_t*);
|
||||||
typedef void(*draw_fn)(struct object_t*);
|
typedef void(*draw_fn)(struct object_t*);
|
||||||
|
@ -14,7 +13,7 @@ struct object_t {
|
||||||
sprite_t sprite;
|
sprite_t sprite;
|
||||||
int active; // 1 if this object is in use and should not be overriden.
|
int active; // 1 if this object is in use and should not be overriden.
|
||||||
int enabled; // 1 if this object's events should be triggered.
|
int enabled; // 1 if this object's events should be triggered.
|
||||||
collider_t collider; // the collider to use for this object's physics interaction.
|
physics_t physics; // the collider to use for this object's physics interaction.
|
||||||
|
|
||||||
uintptr_t timer; // free to use for whatever
|
uintptr_t timer; // free to use for whatever
|
||||||
|
|
||||||
|
|
|
@ -9,15 +9,17 @@ float fclampf(float x, float min_, float max_) {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
collider_t collider_default() {
|
physics_t physics_default() {
|
||||||
return (collider_t) {
|
return (physics_t) {
|
||||||
.type=COLLIDERTYPE_NONE
|
.type=COLLIDERTYPE_NONE,
|
||||||
|
.velocity_x = 0.f,
|
||||||
|
.velocity_y = 0.f
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
void object_broadcast_collision(object_t* this, object_t* other) {
|
void object_broadcast_collision(object_t* this, object_t* other) {
|
||||||
if(this->collider.evt_collision != NULL) {
|
if(this->physics.evt_collision != NULL) {
|
||||||
this->collider.evt_collision(this, other);
|
this->physics.evt_collision(this, other);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
short can_collide(const object_t* this) {
|
short can_collide(const object_t* this) {
|
||||||
|
@ -40,21 +42,21 @@ int _rect_overlap(float aminx, float aminy, float amaxx, float amaxy, float bmin
|
||||||
|
|
||||||
static inline
|
static inline
|
||||||
short _collision_aabb_aabb(const object_t* a, const object_t* b) {
|
short _collision_aabb_aabb(const object_t* a, const object_t* b) {
|
||||||
const float aminx = a->collider.aabb.x + a->sprite.x, aminy = a->collider.aabb.y + a->sprite.x;
|
const float aminx = a->physics.aabb.x + a->sprite.x, aminy = a->physics.aabb.y + a->sprite.x;
|
||||||
const float amaxx = aminx + a->collider.aabb.w, amaxy = aminy + a->collider.aabb.h;
|
const float amaxx = aminx + a->physics.aabb.w, amaxy = aminy + a->physics.aabb.h;
|
||||||
const float bminx = b->collider.aabb.x, bminy = b->collider.aabb.y;
|
const float bminx = b->physics.aabb.x, bminy = b->physics.aabb.y;
|
||||||
const float bmaxx = b->collider.aabb.x + b->collider.aabb.w, bmaxy = b->collider.aabb.y + b->collider.aabb.h;
|
const float bmaxx = b->physics.aabb.x + b->physics.aabb.w, bmaxy = b->physics.aabb.y + b->physics.aabb.h;
|
||||||
|
|
||||||
return _rect_overlap(aminx, aminy, amaxx, amaxy, bminx, bminy, bmaxx, bmaxy);
|
return _rect_overlap(aminx, aminy, amaxx, amaxy, bminx, bminy, bmaxx, bmaxy);
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline
|
static inline
|
||||||
short _collision_circle_circle(const object_t* a, const object_t* b) {
|
short _collision_circle_circle(const object_t* a, const object_t* b) {
|
||||||
const float ax = a->sprite.x + a->collider.circle.x, ay = a->sprite.y + a->collider.circle.y,
|
const float ax = a->sprite.x + a->physics.circle.x, ay = a->sprite.y + a->physics.circle.y,
|
||||||
bx = b->sprite.x + b->collider.circle.x, by = b->sprite.y + b->collider.circle.y;
|
bx = b->sprite.x + b->physics.circle.x, by = b->sprite.y + b->physics.circle.y;
|
||||||
const float dx = fabsf(ax-bx), dy = fabsf(ay-by);
|
const float dx = fabsf(ax-bx), dy = fabsf(ay-by);
|
||||||
const float sqrdist = dx*dx+dy*dy;
|
const float sqrdist = dx*dx+dy*dy;
|
||||||
const float mindist = a->collider.circle.radius + b->collider.circle.radius;
|
const float mindist = a->physics.circle.radius + b->physics.circle.radius;
|
||||||
const float mindistsqr = mindist*mindist;
|
const float mindistsqr = mindist*mindist;
|
||||||
return sqrdist < mindistsqr;
|
return sqrdist < mindistsqr;
|
||||||
}
|
}
|
||||||
|
@ -62,17 +64,17 @@ short _collision_circle_circle(const object_t* a, const object_t* b) {
|
||||||
static inline
|
static inline
|
||||||
short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
|
short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
|
||||||
// generate a point on the edge of the rectangle that is closest to the circle
|
// generate a point on the edge of the rectangle that is closest to the circle
|
||||||
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
|
const float bbminx = aabb->physics.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->physics.aabb.w,
|
||||||
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
|
bbminy = aabb->physics.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->physics.aabb.h;
|
||||||
const float cx = circle->sprite.x + circle->collider.circle.x,
|
const float cx = circle->sprite.x + circle->physics.circle.x,
|
||||||
cy = circle->sprite.y + circle->collider.circle.y;
|
cy = circle->sprite.y + circle->physics.circle.y;
|
||||||
const float x = fclampf(cx, bbminx, bbmaxx),
|
const float x = fclampf(cx, bbminx, bbmaxx),
|
||||||
y = fclampf(cy, bbminy, bbmaxy);
|
y = fclampf(cy, bbminy, bbmaxy);
|
||||||
const float dx = fabsf(cx - x), dy = fabsf(cy - y);
|
const float dx = fabsf(cx - x), dy = fabsf(cy - y);
|
||||||
|
|
||||||
// calculate the square distance from the centre of the circle to the edge of the aabb
|
// calculate the square distance from the centre of the circle to the edge of the aabb
|
||||||
const float distsqr = dx*dx+dy*dy;
|
const float distsqr = dx*dx+dy*dy;
|
||||||
const float rsqr = circle->collider.circle.radius*circle->collider.circle.radius;
|
const float rsqr = circle->physics.circle.radius*circle->physics.circle.radius;
|
||||||
|
|
||||||
// return if the square distance is larger than the square of the radius
|
// return if the square distance is larger than the square of the radius
|
||||||
return distsqr < rsqr;
|
return distsqr < rsqr;
|
||||||
|
@ -80,13 +82,13 @@ short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
|
||||||
|
|
||||||
static inline
|
static inline
|
||||||
short _collision_check(const object_t* a, const object_t* b) {
|
short _collision_check(const object_t* a, const object_t* b) {
|
||||||
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
|
if(a->physics.type == COLLIDERTYPE_AABB && b->physics.type == COLLIDERTYPE_AABB) {
|
||||||
return _collision_aabb_aabb(a, b);
|
return _collision_aabb_aabb(a, b);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
|
} else if(a->physics.type == COLLIDERTYPE_CIRCLE && b->physics.type == COLLIDERTYPE_CIRCLE) {
|
||||||
return _collision_circle_circle(a, b);
|
return _collision_circle_circle(a, b);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
|
} else if(a->physics.type == COLLIDERTYPE_CIRCLE && b->physics.type == COLLIDERTYPE_AABB) {
|
||||||
return _collision_circle_aabb(a, b);
|
return _collision_circle_aabb(a, b);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
|
} else if(a->physics.type == COLLIDERTYPE_AABB && b->physics.type == COLLIDERTYPE_CIRCLE) {
|
||||||
return _collision_circle_aabb(b, a);
|
return _collision_circle_aabb(b, a);
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -95,11 +97,11 @@ short _collision_check(const object_t* a, const object_t* b) {
|
||||||
static inline
|
static inline
|
||||||
float _solve_circle_aabb(const object_t* circle, const object_t* aabb, float* out_px, float* out_py) {
|
float _solve_circle_aabb(const object_t* circle, const object_t* aabb, float* out_px, float* out_py) {
|
||||||
// generate a point on the edge of the rectangle that is closest to the circle
|
// generate a point on the edge of the rectangle that is closest to the circle
|
||||||
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
|
const float bbminx = aabb->physics.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->physics.aabb.w,
|
||||||
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
|
bbminy = aabb->physics.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->physics.aabb.h;
|
||||||
// the centre of the circle in world space
|
// the centre of the circle in world space
|
||||||
const float cx = circle->sprite.x + circle->collider.circle.x,
|
const float cx = circle->sprite.x + circle->physics.circle.x,
|
||||||
cy = circle->sprite.y + circle->collider.circle.y;
|
cy = circle->sprite.y + circle->physics.circle.y;
|
||||||
// the point on the rectangle closest to the centre of the circle
|
// the point on the rectangle closest to the centre of the circle
|
||||||
const float x = fclampf(cx, bbminx, bbmaxx),
|
const float x = fclampf(cx, bbminx, bbmaxx),
|
||||||
y = fclampf(cy, bbminy, bbmaxy);
|
y = fclampf(cy, bbminy, bbmaxy);
|
||||||
|
@ -111,7 +113,7 @@ float _solve_circle_aabb(const object_t* circle, const object_t* aabb, float* ou
|
||||||
dist_y = fabsf(dif_y);
|
dist_y = fabsf(dif_y);
|
||||||
// euclidean distance
|
// euclidean distance
|
||||||
const float dist = sqrt(dist_x*dist_x + dist_y*dist_y);
|
const float dist = sqrt(dist_x*dist_x + dist_y*dist_y);
|
||||||
const float solve_distance = circle->collider.circle.radius - dist;
|
const float solve_distance = circle->physics.circle.radius - dist;
|
||||||
// distance to solve collision
|
// distance to solve collision
|
||||||
float solve_x, solve_y;
|
float solve_x, solve_y;
|
||||||
normalize(dif_x, dif_y, &solve_x, &solve_y);
|
normalize(dif_x, dif_y, &solve_x, &solve_y);
|
||||||
|
@ -122,11 +124,11 @@ float _solve_circle_aabb(const object_t* circle, const object_t* aabb, float* ou
|
||||||
|
|
||||||
static inline
|
static inline
|
||||||
float _solve_circle_circle(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
float _solve_circle_circle(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
||||||
const float x1 = a->collider.circle.x + a->sprite.x, y1 = a->collider.circle.y + a->sprite.y;
|
const float x1 = a->physics.circle.x + a->sprite.x, y1 = a->physics.circle.y + a->sprite.y;
|
||||||
const float x2 = b->collider.circle.x + b->sprite.x, y2 = b->collider.circle.y + b->sprite.y;
|
const float x2 = b->physics.circle.x + b->sprite.x, y2 = b->physics.circle.y + b->sprite.y;
|
||||||
const float dif_x = x1 - x2, dif_y = y1 - y2;
|
const float dif_x = x1 - x2, dif_y = y1 - y2;
|
||||||
const float difference = sqrtf(fabsf(dif_x*dif_x) + fabsf(dif_y*dif_y));
|
const float difference = sqrtf(fabsf(dif_x*dif_x) + fabsf(dif_y*dif_y));
|
||||||
const float target_difference = a->collider.circle.radius + b->collider.circle.radius;
|
const float target_difference = a->physics.circle.radius + b->physics.circle.radius;
|
||||||
float dir_x, dir_y;
|
float dir_x, dir_y;
|
||||||
normalize(dif_x, dif_y, &dir_x, &dir_y);
|
normalize(dif_x, dif_y, &dir_x, &dir_y);
|
||||||
*out_px = dir_x * target_difference;
|
*out_px = dir_x * target_difference;
|
||||||
|
@ -136,10 +138,10 @@ float _solve_circle_circle(const object_t* a, const object_t* b, float* out_px,
|
||||||
|
|
||||||
static inline
|
static inline
|
||||||
float _solve_aabb_aabb(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
float _solve_aabb_aabb(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
||||||
float right = (a->collider.aabb.x + a->collider.aabb.w + a->sprite.x) - (b->collider.aabb.x + b->sprite.x);
|
float right = (a->physics.aabb.x + a->physics.aabb.w + a->sprite.x) - (b->physics.aabb.x + b->sprite.x);
|
||||||
float left = (a->collider.aabb.x + a->sprite.x) - (b->collider.aabb.x + b->collider.aabb.w + b->sprite.x);
|
float left = (a->physics.aabb.x + a->sprite.x) - (b->physics.aabb.x + b->physics.aabb.w + b->sprite.x);
|
||||||
float top = (a->collider.aabb.y + a->sprite.y) - (b->collider.aabb.y + b->collider.aabb.w + b->sprite.y);
|
float top = (a->physics.aabb.y + a->sprite.y) - (b->physics.aabb.y + b->physics.aabb.w + b->sprite.y);
|
||||||
float bottom = (a->collider.aabb.y + a->collider.aabb.h) - (b->collider.aabb.y + b->sprite.y);
|
float bottom = (a->physics.aabb.y + a->physics.aabb.h) - (b->physics.aabb.y + b->sprite.y);
|
||||||
|
|
||||||
float ret = right;
|
float ret = right;
|
||||||
*out_px = right;
|
*out_px = right;
|
||||||
|
@ -165,15 +167,15 @@ float _solve_aabb_aabb(const object_t* a, const object_t* b, float* out_px, floa
|
||||||
}
|
}
|
||||||
|
|
||||||
float get_solve_force(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
float get_solve_force(const object_t* a, const object_t* b, float* out_px, float* out_py) {
|
||||||
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
|
if(a->physics.type == COLLIDERTYPE_AABB && b->physics.type == COLLIDERTYPE_AABB) {
|
||||||
return _solve_aabb_aabb(a, b, out_px, out_py);
|
return _solve_aabb_aabb(a, b, out_px, out_py);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
|
} else if(a->physics.type == COLLIDERTYPE_AABB && b->physics.type == COLLIDERTYPE_CIRCLE) {
|
||||||
float penetration_distance = _solve_circle_aabb(b, a, out_px, out_py);
|
float penetration_distance = _solve_circle_aabb(b, a, out_px, out_py);
|
||||||
*out_px = -(*out_px);
|
*out_px = -(*out_px);
|
||||||
*out_py = -(*out_py);
|
*out_py = -(*out_py);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
|
} else if(a->physics.type == COLLIDERTYPE_CIRCLE && b->physics.type == COLLIDERTYPE_AABB) {
|
||||||
return _solve_circle_aabb(a, b, out_px, out_py);
|
return _solve_circle_aabb(a, b, out_px, out_py);
|
||||||
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
|
} else if(a->physics.type == COLLIDERTYPE_CIRCLE && b->physics.type == COLLIDERTYPE_CIRCLE) {
|
||||||
return _solve_circle_circle(a, b, out_px, out_py);
|
return _solve_circle_circle(a, b, out_px, out_py);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -201,17 +203,21 @@ void _solve_move(object_t* this) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void interpolate_move(object_t* this, const float target_x, const float target_y, const float max_step_size, const int slide) {
|
void move_and_slide(object_t* this, float delta_time) {
|
||||||
|
const float max_step_size = this->physics.max_interpolate_step_size;
|
||||||
// calculate step delta
|
// calculate step delta
|
||||||
float dx = target_x - this->sprite.x, dy = target_y - this->sprite.y;
|
float dx = this->physics.velocity_x * delta_time, dy = this->physics.velocity_y * delta_time;
|
||||||
|
const float target_x = this->sprite.x + dx,
|
||||||
|
target_y = this->sprite.y + dy;
|
||||||
if(dx == 0 && dy == 0)
|
if(dx == 0 && dy == 0)
|
||||||
return;
|
return;
|
||||||
|
|
||||||
// calculate direction x,y
|
// calculate direction x,y
|
||||||
float m = sqrtf(dx*dx + dy*dy);
|
float m = sqrtf(dx*dx + dy*dy);
|
||||||
dx /= m;
|
dx = dx / m * max_step_size;
|
||||||
dy /= m;
|
dy = dy / m * max_step_size;
|
||||||
dx *= max_step_size; dy *= max_step_size;
|
|
||||||
int step_count = max_step_size / m;
|
const int step_count = max_step_size / m;
|
||||||
|
|
||||||
// ensure this object would ever collide
|
// ensure this object would ever collide
|
||||||
// if it wouldn't collide anyway, just set position
|
// if it wouldn't collide anyway, just set position
|
||||||
|
@ -225,6 +231,7 @@ void interpolate_move(object_t* this, const float target_x, const float target_y
|
||||||
this->sprite.x = target_x;
|
this->sprite.x = target_x;
|
||||||
this->sprite.y = target_y;
|
this->sprite.y = target_y;
|
||||||
_solve_move(this);
|
_solve_move(this);
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -233,21 +240,14 @@ void interpolate_move(object_t* this, const float target_x, const float target_y
|
||||||
*/
|
*/
|
||||||
for(int steps = 0; steps <= step_count && (this->sprite.x != target_x || this->sprite.y != target_y); ++steps) {
|
for(int steps = 0; steps <= step_count && (this->sprite.x != target_x || this->sprite.y != target_y); ++steps) {
|
||||||
// move towards target, snap to target if distance is too low
|
// move towards target, snap to target if distance is too low
|
||||||
const float old_x = this->sprite.x, old_y = this->sprite.y;
|
|
||||||
float new_x, new_y;
|
|
||||||
|
|
||||||
const float distx = fabsf(this->sprite.x - target_x), disty = fabsf(this->sprite.y - target_y);
|
const float distx = fabsf(this->sprite.x - target_x), disty = fabsf(this->sprite.y - target_y);
|
||||||
const float sqdist = distx*distx + disty*disty;
|
const float sqdist = distx*distx + disty*disty;
|
||||||
if(sqdist > max_step_size*max_step_size) {
|
if(sqdist > max_step_size*max_step_size) {
|
||||||
this->sprite.x += dx;
|
this->sprite.x += dx;
|
||||||
this->sprite.y += dy;
|
this->sprite.y += dy;
|
||||||
new_x = this->sprite.x;
|
|
||||||
new_y = this->sprite.y;
|
|
||||||
} else {
|
} else {
|
||||||
this->sprite.x = target_x;
|
this->sprite.x = target_x;
|
||||||
this->sprite.y = target_y;
|
this->sprite.y = target_y;
|
||||||
new_x = target_x;
|
|
||||||
new_y = target_y;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
_solve_move(this);
|
_solve_move(this);
|
||||||
|
|
|
@ -15,25 +15,29 @@ typedef enum collider_type_t {
|
||||||
COLLIDERTYPE_MAX,
|
COLLIDERTYPE_MAX,
|
||||||
} collider_type_t;
|
} collider_type_t;
|
||||||
|
|
||||||
typedef struct collider_t {
|
typedef struct circle_t {
|
||||||
collider_type_t type;
|
|
||||||
collided_fn evt_collision;
|
|
||||||
union {
|
|
||||||
struct {
|
|
||||||
float x, y;
|
float x, y;
|
||||||
float radius;
|
float radius;
|
||||||
} circle;
|
} circle_t;
|
||||||
|
|
||||||
|
typedef struct physics_t {
|
||||||
|
collider_type_t type;
|
||||||
|
collided_fn evt_collision;
|
||||||
|
float velocity_x, velocity_y;
|
||||||
|
float max_interpolate_step_size;
|
||||||
|
union {
|
||||||
|
circle_t circle;
|
||||||
SDL_FRect aabb;
|
SDL_FRect aabb;
|
||||||
};
|
};
|
||||||
} collider_t;
|
} physics_t;
|
||||||
|
|
||||||
collider_t collider_default();
|
physics_t physics_default();
|
||||||
|
|
||||||
void object_broadcast_evt_collision(object_t* this, object_t* other);
|
void object_broadcast_evt_collision(object_t* this, object_t* other);
|
||||||
|
|
||||||
void physics_update();
|
void physics_update();
|
||||||
|
|
||||||
void interpolate_move(object_t* object, float target_x, float target_y, float max_step_size, int slide);
|
void move_and_slide(object_t* this, float delta_time);
|
||||||
|
|
||||||
extern short can_collide(const object_t* this);
|
extern short can_collide(const object_t* this);
|
||||||
extern float get_solve_force(const object_t* this, const object_t* other, float* solve_x, float* solve_y);
|
extern float get_solve_force(const object_t* this, const object_t* other, float* solve_x, float* solve_y);
|
||||||
|
|
Loading…
Reference in New Issue