fully implemented slide collision for any combination of aabb and circle colliders

pull/7/head
Sara 2023-06-24 20:32:54 +02:00
parent daa53c6ef0
commit 4271ee8f8d
1 changed files with 128 additions and 15 deletions

View File

@ -1,4 +1,5 @@
#include "world.h" #include "world.h"
#include "math/vec.h"
object_t g_objects[WORLD_NUM_OBJECTS]; object_t g_objects[WORLD_NUM_OBJECTS];
@ -106,6 +107,93 @@ float fclampf(float x, float min_, float max_) {
return fminf(max_, fmaxf(min_, x)); return fminf(max_, fmaxf(min_, x));
} }
static inline
float _circle_aabb_overlap(const object_t* circle, const object_t* aabb, float* out_px, float* out_py) {
// generate a point on the edge of the rectangle that is closest to the circle
const float bbminx = aabb->collider.aabb.x + aabb->sprite.x, bbmaxx = bbminx + aabb->collider.aabb.w,
bbminy = aabb->collider.aabb.y + aabb->sprite.y, bbmaxy = bbminy + aabb->collider.aabb.h;
// the centre of the circle in world space
const float cx = circle->sprite.x + circle->collider.circle.x,
cy = circle->sprite.y + circle->collider.circle.y;
// the point on the rectangle closest to the centre of the circle
const float x = fclampf(cx, bbminx, bbmaxx),
y = fclampf(cy, bbminy, bbmaxy);
// the relative position of the point on the rectangle
const float dif_x = cx - x,
dif_y = cy - y;
// absolute difference for use in calculating euclidean distance
const float dist_x = fabsf(dif_x),
dist_y = fabsf(dif_y);
// euclidean distance
const float dist = sqrt(dist_x*dist_x + dist_y*dist_y);
const float solve_distance = circle->collider.circle.radius - dist;
// distance to solve collision
float solve_x, solve_y;
normalize(dif_x, dif_y, &solve_x, &solve_y);
*out_px = solve_x * solve_distance;
*out_py = solve_y * solve_distance;
return solve_distance;
}
static inline
float _circle_circle_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
const float x1 = a->collider.circle.x + a->sprite.x, y1 = a->collider.circle.y + a->sprite.y;
const float x2 = b->collider.circle.x + b->sprite.x, y2 = b->collider.circle.y + b->sprite.y;
const float dif_x = x1 - x2, dif_y = y1 - y2;
const float difference = sqrtf(fabsf(dif_x*dif_x) + fabsf(dif_y*dif_y));
const float target_difference = a->collider.circle.radius + b->collider.circle.radius;
float dir_x, dir_y;
normalize(dif_x, dif_y, &dir_x, &dir_y);
*out_px = dir_x * target_difference;
*out_py = dir_y * target_difference;
return target_difference;
}
static inline
float _aabb_aabb_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
float right = (a->collider.aabb.x + a->collider.aabb.w + a->sprite.x) - (b->collider.aabb.x + b->sprite.x);
float left = (a->collider.aabb.x + a->sprite.x) - (b->collider.aabb.x + b->collider.aabb.w + b->sprite.x);
float top = (a->collider.aabb.y + a->sprite.y) - (b->collider.aabb.y + b->collider.aabb.w + b->sprite.y);
float bottom = (a->collider.aabb.y + a->collider.aabb.h) - (b->collider.aabb.y + b->sprite.y);
float ret = right;
*out_px = right;
*out_py = 0.f;
if(fabsf(left) < fabsf(ret)) {
*out_px = left;
*out_py = 0.f;
ret = left;
}
if(fabsf(top) < fabsf(ret)) {
*out_px = 0.f;
*out_py = top;
ret = top;
}
if(fabsf(bottom) < fabsf(ret)) {
*out_px = 0.f;
*out_py = bottom;
return bottom;
}
return ret;
}
static inline
float _get_overlap(const object_t* a, const object_t* b, float* out_px, float* out_py) {
if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_AABB) {
return _aabb_aabb_overlap(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_AABB && b->collider.type == COLLIDERTYPE_CIRCLE) {
float penetration_distance = _circle_aabb_overlap(b, a, out_px, out_py);
*out_px = -(*out_px);
*out_py = -(*out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_AABB) {
return _circle_aabb_overlap(a, b, out_px, out_py);
} else if(a->collider.type == COLLIDERTYPE_CIRCLE && b->collider.type == COLLIDERTYPE_CIRCLE) {
return _circle_circle_overlap(a, b, out_px, out_py);
}
}
static inline static inline
short _collision_circle_aabb(const object_t* circle, const object_t* aabb) { short _collision_circle_aabb(const object_t* circle, const object_t* aabb) {
// generate a point on the edge of the rectangle that is closest to the circle // generate a point on the edge of the rectangle that is closest to the circle
@ -166,9 +254,40 @@ void update_collision() {
} }
} }
void interpolate_move(object_t* object, float target_x, float target_y, float max_step_size, int slide) { static inline
void _slide_collision(object_t* this, object_t* other, float old_x, float old_y, float new_x, float new_y) {
float dx, dy;
const float d = _get_overlap(this, other, &dx, &dy);
this->sprite.x += dx;
this->sprite.y += dy;
printf("collision solving step: %f %f, distance: %f\n", dx, dy, d);
printf("collision solved, resulting position: %f, %f\n", this->sprite.x, this->sprite.y);
return;
this->sprite.x = old_x;
this->sprite.y = new_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = new_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
this->sprite.x = old_x;
this->sprite.y = old_y;
if(!_collision_check(other, this)) {
return;
}
}
void interpolate_move(object_t* object, const float target_x, const float target_y, const float max_step_size, const int slide) {
// calculate step delta // calculate step delta
float dx = target_x - object->sprite.x, dy = target_y - object->sprite.y; float dx = target_x - object->sprite.x, dy = target_y - object->sprite.y;
if(dx == 0 && dy == 0)
return;
// calculate direction x,y // calculate direction x,y
float m = sqrtf(dx*dx + dy*dy); float m = sqrtf(dx*dx + dy*dy);
if(dx != 0) if(dx != 0)
@ -194,10 +313,14 @@ void interpolate_move(object_t* object, float target_x, float target_y, float ma
// move towards target, snap to target if distance is too low // move towards target, snap to target if distance is too low
const float old_x = object->sprite.x, old_y = object->sprite.y; const float old_x = object->sprite.x, old_y = object->sprite.y;
float new_x, new_y; float new_x, new_y;
const float distx = fabsf(object->sprite.x - target_x), disty = fabsf(object->sprite.y - target_y); const float distx = fabsf(object->sprite.x - target_x), disty = fabsf(object->sprite.y - target_y);
if(distx < fabsf(dx) && disty < fabsf(dy)) { const float sqdist = distx*distx + disty*disty;
new_x = object->sprite.x += dx; if(sqdist > max_step_size) {
new_y = object->sprite.y += dy; object->sprite.x += dx;
object->sprite.y += dy;
new_x = object->sprite.x;
new_y = object->sprite.y;
} else { } else {
new_x = object->sprite.x = target_x; new_x = object->sprite.x = target_x;
new_y = object->sprite.y = target_y; new_y = object->sprite.y = target_y;
@ -212,14 +335,7 @@ void interpolate_move(object_t* object, float target_x, float target_y, float ma
object_broadcast_collision(other, object); object_broadcast_collision(other, object);
object_broadcast_collision(object, other); object_broadcast_collision(object, other);
if(slide) { if(slide) {
object->sprite.x = old_x; _slide_collision(object, other, old_x, old_y, new_x, new_y);
if(!_collision_check(other, object)) {
object->sprite.x = new_x;
}
object->sprite.y = old_y;
if(!_collision_check(other, object)) {
object->sprite.y = new_y;
}
} else { } else {
object->sprite.x = old_x; object->sprite.x = old_x;
object->sprite.y = old_y; object->sprite.y = old_y;
@ -228,7 +344,4 @@ void interpolate_move(object_t* object, float target_x, float target_y, float ma
} }
} }
} }
// no collision, return nothing
return;
} }