213 lines
4.9 KiB
C++
213 lines
4.9 KiB
C++
#ifndef GODOT_QUAT_HPP
|
|
#define GODOT_QUAT_HPP
|
|
|
|
#include <godot_cpp/core/math.hpp>
|
|
#include <godot_cpp/variant/vector3.hpp>
|
|
|
|
namespace godot {
|
|
|
|
class Quaternion {
|
|
public:
|
|
_FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; }
|
|
|
|
union {
|
|
struct {
|
|
real_t x;
|
|
real_t y;
|
|
real_t z;
|
|
real_t w;
|
|
};
|
|
real_t components[4] = { 0, 0, 0, 1.0 };
|
|
};
|
|
|
|
inline real_t &operator[](int idx) {
|
|
return components[idx];
|
|
}
|
|
inline const real_t &operator[](int idx) const {
|
|
return components[idx];
|
|
}
|
|
inline real_t length_squared() const;
|
|
bool is_equal_approx(const Quaternion &p_quat) const;
|
|
real_t length() const;
|
|
void normalize();
|
|
Quaternion normalized() const;
|
|
bool is_normalized() const;
|
|
Quaternion inverse() const;
|
|
inline real_t dot(const Quaternion &p_q) const;
|
|
|
|
Vector3 get_euler_xyz() const;
|
|
Vector3 get_euler_yxz() const;
|
|
Vector3 get_euler() const { return get_euler_yxz(); };
|
|
|
|
Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
|
|
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
|
|
Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
|
|
|
|
inline void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
|
r_angle = 2 * Math::acos(w);
|
|
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
|
|
r_axis.x = x * r;
|
|
r_axis.y = y * r;
|
|
r_axis.z = z * r;
|
|
}
|
|
|
|
void operator*=(const Quaternion &p_q);
|
|
Quaternion operator*(const Quaternion &p_q) const;
|
|
|
|
Quaternion operator*(const Vector3 &v) const {
|
|
return Quaternion(w * v.x + y * v.z - z * v.y,
|
|
w * v.y + z * v.x - x * v.z,
|
|
w * v.z + x * v.y - y * v.x,
|
|
-x * v.x - y * v.y - z * v.z);
|
|
}
|
|
|
|
inline Vector3 xform(const Vector3 &v) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V(!is_normalized(), v);
|
|
#endif
|
|
Vector3 u(x, y, z);
|
|
Vector3 uv = u.cross(v);
|
|
return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
|
|
}
|
|
|
|
inline Vector3 xform_inv(const Vector3 &v) const {
|
|
return inverse().xform(v);
|
|
}
|
|
|
|
inline void operator+=(const Quaternion &p_q);
|
|
inline void operator-=(const Quaternion &p_q);
|
|
inline void operator*=(const real_t &s);
|
|
inline void operator/=(const real_t &s);
|
|
inline Quaternion operator+(const Quaternion &q2) const;
|
|
inline Quaternion operator-(const Quaternion &q2) const;
|
|
inline Quaternion operator-() const;
|
|
inline Quaternion operator*(const real_t &s) const;
|
|
inline Quaternion operator/(const real_t &s) const;
|
|
|
|
inline bool operator==(const Quaternion &p_quat) const;
|
|
inline bool operator!=(const Quaternion &p_quat) const;
|
|
|
|
operator String() const;
|
|
|
|
inline Quaternion() {}
|
|
|
|
inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
|
|
x(p_x),
|
|
y(p_y),
|
|
z(p_z),
|
|
w(p_w) {
|
|
}
|
|
|
|
Quaternion(const Vector3 &p_axis, real_t p_angle);
|
|
|
|
Quaternion(const Vector3 &p_euler);
|
|
|
|
Quaternion(const Quaternion &p_q) :
|
|
x(p_q.x),
|
|
y(p_q.y),
|
|
z(p_q.z),
|
|
w(p_q.w) {
|
|
}
|
|
|
|
Quaternion &operator=(const Quaternion &p_q) {
|
|
x = p_q.x;
|
|
y = p_q.y;
|
|
z = p_q.z;
|
|
w = p_q.w;
|
|
return *this;
|
|
}
|
|
|
|
Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
|
|
{
|
|
Vector3 c = v0.cross(v1);
|
|
real_t d = v0.dot(v1);
|
|
|
|
if (d < -1.0 + CMP_EPSILON) {
|
|
x = 0;
|
|
y = 1;
|
|
z = 0;
|
|
w = 0;
|
|
} else {
|
|
real_t s = Math::sqrt((1.0 + d) * 2.0);
|
|
real_t rs = 1.0 / s;
|
|
|
|
x = c.x * rs;
|
|
y = c.y * rs;
|
|
z = c.z * rs;
|
|
w = s * 0.5;
|
|
}
|
|
}
|
|
};
|
|
|
|
real_t Quaternion::dot(const Quaternion &p_q) const {
|
|
return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
|
|
}
|
|
|
|
real_t Quaternion::length_squared() const {
|
|
return dot(*this);
|
|
}
|
|
|
|
void Quaternion::operator+=(const Quaternion &p_q) {
|
|
x += p_q.x;
|
|
y += p_q.y;
|
|
z += p_q.z;
|
|
w += p_q.w;
|
|
}
|
|
|
|
void Quaternion::operator-=(const Quaternion &p_q) {
|
|
x -= p_q.x;
|
|
y -= p_q.y;
|
|
z -= p_q.z;
|
|
w -= p_q.w;
|
|
}
|
|
|
|
void Quaternion::operator*=(const real_t &s) {
|
|
x *= s;
|
|
y *= s;
|
|
z *= s;
|
|
w *= s;
|
|
}
|
|
|
|
void Quaternion::operator/=(const real_t &s) {
|
|
*this *= 1.0 / s;
|
|
}
|
|
|
|
Quaternion Quaternion::operator+(const Quaternion &q2) const {
|
|
const Quaternion &q1 = *this;
|
|
return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
|
|
}
|
|
|
|
Quaternion Quaternion::operator-(const Quaternion &q2) const {
|
|
const Quaternion &q1 = *this;
|
|
return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
|
|
}
|
|
|
|
Quaternion Quaternion::operator-() const {
|
|
const Quaternion &q2 = *this;
|
|
return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
|
|
}
|
|
|
|
Quaternion Quaternion::operator*(const real_t &s) const {
|
|
return Quaternion(x * s, y * s, z * s, w * s);
|
|
}
|
|
|
|
Quaternion Quaternion::operator/(const real_t &s) const {
|
|
return *this * (1.0 / s);
|
|
}
|
|
|
|
bool Quaternion::operator==(const Quaternion &p_quat) const {
|
|
return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
|
|
}
|
|
|
|
bool Quaternion::operator!=(const Quaternion &p_quat) const {
|
|
return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
|
|
}
|
|
|
|
inline Quaternion operator*(const real_t &p_real, const Quaternion &p_quat) {
|
|
return p_quat * p_real;
|
|
}
|
|
|
|
} // namespace godot
|
|
|
|
#endif // GODOT_QUAT_HPP
|