812 lines
23 KiB
C++
812 lines
23 KiB
C++
/**************************************************************************/
|
|
/* math.hpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef GODOT_MATH_HPP
|
|
#define GODOT_MATH_HPP
|
|
|
|
#include <godot_cpp/core/defs.hpp>
|
|
|
|
#include <gdextension_interface.h>
|
|
|
|
#include <cmath>
|
|
|
|
namespace godot {
|
|
|
|
#define Math_SQRT12 0.7071067811865475244008443621048490
|
|
#define Math_SQRT2 1.4142135623730950488016887242
|
|
#define Math_LN2 0.6931471805599453094172321215
|
|
#define Math_PI 3.1415926535897932384626433833
|
|
#define Math_TAU 6.2831853071795864769252867666
|
|
#define Math_E 2.7182818284590452353602874714
|
|
#define Math_INF INFINITY
|
|
#define Math_NAN NAN
|
|
|
|
// Make room for our constexpr's below by overriding potential system-specific macros.
|
|
#undef ABS
|
|
#undef SIGN
|
|
#undef MIN
|
|
#undef MAX
|
|
#undef CLAMP
|
|
|
|
// Generic ABS function, for math uses please use Math::abs.
|
|
template <typename T>
|
|
constexpr T ABS(T m_v) {
|
|
return m_v < 0 ? -m_v : m_v;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr const T SIGN(const T m_v) {
|
|
return m_v == 0 ? 0.0f : (m_v < 0 ? -1.0f : +1.0f);
|
|
}
|
|
|
|
template <typename T, typename T2>
|
|
constexpr auto MIN(const T m_a, const T2 m_b) {
|
|
return m_a < m_b ? m_a : m_b;
|
|
}
|
|
|
|
template <typename T, typename T2>
|
|
constexpr auto MAX(const T m_a, const T2 m_b) {
|
|
return m_a > m_b ? m_a : m_b;
|
|
}
|
|
|
|
template <typename T, typename T2, typename T3>
|
|
constexpr auto CLAMP(const T m_a, const T2 m_min, const T3 m_max) {
|
|
return m_a < m_min ? m_min : (m_a > m_max ? m_max : m_a);
|
|
}
|
|
|
|
// Generic swap template.
|
|
#ifndef SWAP
|
|
#define SWAP(m_x, m_y) __swap_tmpl((m_x), (m_y))
|
|
template <class T>
|
|
inline void __swap_tmpl(T &x, T &y) {
|
|
T aux = x;
|
|
x = y;
|
|
y = aux;
|
|
}
|
|
#endif // SWAP
|
|
|
|
/* Functions to handle powers of 2 and shifting. */
|
|
|
|
// Function to find the next power of 2 to an integer.
|
|
static _FORCE_INLINE_ unsigned int next_power_of_2(unsigned int x) {
|
|
if (x == 0) {
|
|
return 0;
|
|
}
|
|
|
|
--x;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
|
|
return ++x;
|
|
}
|
|
|
|
// Function to find the previous power of 2 to an integer.
|
|
static _FORCE_INLINE_ unsigned int previous_power_of_2(unsigned int x) {
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
return x - (x >> 1);
|
|
}
|
|
|
|
// Function to find the closest power of 2 to an integer.
|
|
static _FORCE_INLINE_ unsigned int closest_power_of_2(unsigned int x) {
|
|
unsigned int nx = next_power_of_2(x);
|
|
unsigned int px = previous_power_of_2(x);
|
|
return (nx - x) > (x - px) ? px : nx;
|
|
}
|
|
|
|
// Get a shift value from a power of 2.
|
|
static inline int get_shift_from_power_of_2(unsigned int p_bits) {
|
|
for (unsigned int i = 0; i < 32; i++) {
|
|
if (p_bits == (unsigned int)(1 << i)) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
template <class T>
|
|
static _FORCE_INLINE_ T nearest_power_of_2_templated(T x) {
|
|
--x;
|
|
|
|
// The number of operations on x is the base two logarithm
|
|
// of the number of bits in the type. Add three to account
|
|
// for sizeof(T) being in bytes.
|
|
size_t num = get_shift_from_power_of_2(sizeof(T)) + 3;
|
|
|
|
// If the compiler is smart, it unrolls this loop.
|
|
// If it's dumb, this is a bit slow.
|
|
for (size_t i = 0; i < num; i++) {
|
|
x |= x >> (1 << i);
|
|
}
|
|
|
|
return ++x;
|
|
}
|
|
|
|
// Function to find the nearest (bigger) power of 2 to an integer.
|
|
static inline unsigned int nearest_shift(unsigned int p_number) {
|
|
for (int i = 30; i >= 0; i--) {
|
|
if (p_number & (1 << i)) {
|
|
return i + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// constexpr function to find the floored log2 of a number
|
|
template <typename T>
|
|
constexpr T floor_log2(T x) {
|
|
return x < 2 ? x : 1 + floor_log2(x >> 1);
|
|
}
|
|
|
|
// Get the number of bits needed to represent the number.
|
|
// IE, if you pass in 8, you will get 4.
|
|
// If you want to know how many bits are needed to store 8 values however, pass in (8 - 1).
|
|
template <typename T>
|
|
constexpr T get_num_bits(T x) {
|
|
return floor_log2(x);
|
|
}
|
|
|
|
// Swap 16, 32 and 64 bits value for endianness.
|
|
#if defined(__GNUC__)
|
|
#define BSWAP16(x) __builtin_bswap16(x)
|
|
#define BSWAP32(x) __builtin_bswap32(x)
|
|
#define BSWAP64(x) __builtin_bswap64(x)
|
|
#else
|
|
static inline uint16_t BSWAP16(uint16_t x) {
|
|
return (x >> 8) | (x << 8);
|
|
}
|
|
|
|
static inline uint32_t BSWAP32(uint32_t x) {
|
|
return ((x << 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x >> 24));
|
|
}
|
|
|
|
static inline uint64_t BSWAP64(uint64_t x) {
|
|
x = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32;
|
|
x = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16;
|
|
x = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8;
|
|
return x;
|
|
}
|
|
#endif
|
|
|
|
namespace Math {
|
|
|
|
// This epsilon should match the one used by Godot for consistency.
|
|
// Using `f` when `real_t` is float.
|
|
#define CMP_EPSILON 0.00001f
|
|
#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)
|
|
|
|
// This epsilon is for values related to a unit size (scalar or vector len).
|
|
#ifdef PRECISE_MATH_CHECKS
|
|
#define UNIT_EPSILON 0.00001
|
|
#else
|
|
// Tolerate some more floating point error normally.
|
|
#define UNIT_EPSILON 0.001
|
|
#endif
|
|
|
|
// Functions reproduced as in Godot's source code `math_funcs.h`.
|
|
// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
|
|
|
|
inline double fmod(double p_x, double p_y) {
|
|
return ::fmod(p_x, p_y);
|
|
}
|
|
inline float fmod(float p_x, float p_y) {
|
|
return ::fmodf(p_x, p_y);
|
|
}
|
|
|
|
inline double fposmod(double p_x, double p_y) {
|
|
double value = Math::fmod(p_x, p_y);
|
|
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
inline float fposmod(float p_x, float p_y) {
|
|
float value = Math::fmod(p_x, p_y);
|
|
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0f;
|
|
return value;
|
|
}
|
|
|
|
inline float fposmodp(float p_x, float p_y) {
|
|
float value = Math::fmod(p_x, p_y);
|
|
if (value < 0) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0f;
|
|
return value;
|
|
}
|
|
inline double fposmodp(double p_x, double p_y) {
|
|
double value = Math::fmod(p_x, p_y);
|
|
if (value < 0) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
|
|
inline int64_t posmod(int64_t p_x, int64_t p_y) {
|
|
int64_t value = p_x % p_y;
|
|
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
|
value += p_y;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
inline double floor(double p_x) {
|
|
return ::floor(p_x);
|
|
}
|
|
inline float floor(float p_x) {
|
|
return ::floorf(p_x);
|
|
}
|
|
|
|
inline double ceil(double p_x) {
|
|
return ::ceil(p_x);
|
|
}
|
|
inline float ceil(float p_x) {
|
|
return ::ceilf(p_x);
|
|
}
|
|
|
|
inline double exp(double p_x) {
|
|
return ::exp(p_x);
|
|
}
|
|
inline float exp(float p_x) {
|
|
return ::expf(p_x);
|
|
}
|
|
|
|
inline double sin(double p_x) {
|
|
return ::sin(p_x);
|
|
}
|
|
inline float sin(float p_x) {
|
|
return ::sinf(p_x);
|
|
}
|
|
|
|
inline double cos(double p_x) {
|
|
return ::cos(p_x);
|
|
}
|
|
inline float cos(float p_x) {
|
|
return ::cosf(p_x);
|
|
}
|
|
|
|
inline double tan(double p_x) {
|
|
return ::tan(p_x);
|
|
}
|
|
inline float tan(float p_x) {
|
|
return ::tanf(p_x);
|
|
}
|
|
|
|
inline double sinh(double p_x) {
|
|
return ::sinh(p_x);
|
|
}
|
|
inline float sinh(float p_x) {
|
|
return ::sinhf(p_x);
|
|
}
|
|
|
|
inline float sinc(float p_x) {
|
|
return p_x == 0 ? 1 : ::sin(p_x) / p_x;
|
|
}
|
|
inline double sinc(double p_x) {
|
|
return p_x == 0 ? 1 : ::sin(p_x) / p_x;
|
|
}
|
|
|
|
inline float sincn(float p_x) {
|
|
return (float)sinc(Math_PI * p_x);
|
|
}
|
|
inline double sincn(double p_x) {
|
|
return sinc(Math_PI * p_x);
|
|
}
|
|
|
|
inline double cosh(double p_x) {
|
|
return ::cosh(p_x);
|
|
}
|
|
inline float cosh(float p_x) {
|
|
return ::coshf(p_x);
|
|
}
|
|
|
|
inline double tanh(double p_x) {
|
|
return ::tanh(p_x);
|
|
}
|
|
inline float tanh(float p_x) {
|
|
return ::tanhf(p_x);
|
|
}
|
|
|
|
inline double asin(double p_x) {
|
|
return ::asin(p_x);
|
|
}
|
|
inline float asin(float p_x) {
|
|
return ::asinf(p_x);
|
|
}
|
|
|
|
inline double acos(double p_x) {
|
|
return ::acos(p_x);
|
|
}
|
|
inline float acos(float p_x) {
|
|
return ::acosf(p_x);
|
|
}
|
|
|
|
inline double atan(double p_x) {
|
|
return ::atan(p_x);
|
|
}
|
|
inline float atan(float p_x) {
|
|
return ::atanf(p_x);
|
|
}
|
|
|
|
inline double atan2(double p_y, double p_x) {
|
|
return ::atan2(p_y, p_x);
|
|
}
|
|
inline float atan2(float p_y, float p_x) {
|
|
return ::atan2f(p_y, p_x);
|
|
}
|
|
|
|
inline double sqrt(double p_x) {
|
|
return ::sqrt(p_x);
|
|
}
|
|
inline float sqrt(float p_x) {
|
|
return ::sqrtf(p_x);
|
|
}
|
|
|
|
inline double pow(double p_x, double p_y) {
|
|
return ::pow(p_x, p_y);
|
|
}
|
|
inline float pow(float p_x, float p_y) {
|
|
return ::powf(p_x, p_y);
|
|
}
|
|
|
|
inline double log(double p_x) {
|
|
return ::log(p_x);
|
|
}
|
|
inline float log(float p_x) {
|
|
return ::logf(p_x);
|
|
}
|
|
|
|
inline float lerp(float minv, float maxv, float t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
inline double lerp(double minv, double maxv, double t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
|
|
inline double lerp_angle(double p_from, double p_to, double p_weight) {
|
|
double difference = fmod(p_to - p_from, Math_TAU);
|
|
double distance = fmod(2.0 * difference, Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
inline float lerp_angle(float p_from, float p_to, float p_weight) {
|
|
float difference = fmod(p_to - p_from, (float)Math_TAU);
|
|
float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
|
|
inline double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
|
|
return 0.5 *
|
|
((p_from * 2.0) +
|
|
(-p_pre + p_to) * p_weight +
|
|
(2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
|
|
(-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
|
|
}
|
|
|
|
inline float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
|
|
return 0.5f *
|
|
((p_from * 2.0f) +
|
|
(-p_pre + p_to) * p_weight +
|
|
(2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
|
|
(-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
|
|
}
|
|
|
|
inline double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
|
|
double from_rot = fmod(p_from, Math_TAU);
|
|
|
|
double pre_diff = fmod(p_pre - from_rot, Math_TAU);
|
|
double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
|
|
|
|
double to_diff = fmod(p_to - from_rot, Math_TAU);
|
|
double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
|
|
|
|
double post_diff = fmod(p_post - to_rot, Math_TAU);
|
|
double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
|
|
|
|
return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
|
|
}
|
|
|
|
inline float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
|
|
float from_rot = fmod(p_from, (float)Math_TAU);
|
|
|
|
float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
|
|
float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
|
|
|
|
float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
|
|
float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
|
|
|
|
float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
|
|
float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
|
|
|
|
return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
|
|
}
|
|
|
|
inline double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
|
|
double p_to_t, double p_pre_t, double p_post_t) {
|
|
/* Barry-Goldman method */
|
|
double t = Math::lerp(0.0, p_to_t, p_weight);
|
|
double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
|
|
double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
|
|
double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
|
|
double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
|
|
double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
|
|
return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
|
|
}
|
|
|
|
inline float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
|
|
float p_to_t, float p_pre_t, float p_post_t) {
|
|
/* Barry-Goldman method */
|
|
float t = Math::lerp(0.0f, p_to_t, p_weight);
|
|
float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
|
|
float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
|
|
float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
|
|
float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
|
|
float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
|
|
return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
|
|
}
|
|
|
|
inline double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
|
|
double p_to_t, double p_pre_t, double p_post_t) {
|
|
double from_rot = fmod(p_from, Math_TAU);
|
|
|
|
double pre_diff = fmod(p_pre - from_rot, Math_TAU);
|
|
double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
|
|
|
|
double to_diff = fmod(p_to - from_rot, Math_TAU);
|
|
double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
|
|
|
|
double post_diff = fmod(p_post - to_rot, Math_TAU);
|
|
double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
|
|
|
|
return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
|
|
}
|
|
|
|
inline float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
|
|
float p_to_t, float p_pre_t, float p_post_t) {
|
|
float from_rot = fmod(p_from, (float)Math_TAU);
|
|
|
|
float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
|
|
float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
|
|
|
|
float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
|
|
float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
|
|
|
|
float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
|
|
float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
|
|
|
|
return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
|
|
}
|
|
|
|
inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
|
|
/* Formula from Wikipedia article on Bezier curves. */
|
|
double omt = (1.0 - p_t);
|
|
double omt2 = omt * omt;
|
|
double omt3 = omt2 * omt;
|
|
double t2 = p_t * p_t;
|
|
double t3 = t2 * p_t;
|
|
|
|
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
|
|
}
|
|
|
|
inline float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
|
|
/* Formula from Wikipedia article on Bezier curves. */
|
|
float omt = (1.0f - p_t);
|
|
float omt2 = omt * omt;
|
|
float omt3 = omt2 * omt;
|
|
float t2 = p_t * p_t;
|
|
float t3 = t2 * p_t;
|
|
|
|
return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T clamp(T x, T minv, T maxv) {
|
|
if (x < minv) {
|
|
return minv;
|
|
}
|
|
if (x > maxv) {
|
|
return maxv;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T max(T a, T b) {
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T sign(T x) {
|
|
return static_cast<T>(x < 0 ? -1 : 1);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T abs(T x) {
|
|
return std::abs(x);
|
|
}
|
|
|
|
inline double deg_to_rad(double p_y) {
|
|
return p_y * Math_PI / 180.0;
|
|
}
|
|
inline float deg_to_rad(float p_y) {
|
|
return p_y * static_cast<float>(Math_PI) / 180.f;
|
|
}
|
|
|
|
inline double rad_to_deg(double p_y) {
|
|
return p_y * 180.0 / Math_PI;
|
|
}
|
|
inline float rad_to_deg(float p_y) {
|
|
return p_y * 180.f / static_cast<float>(Math_PI);
|
|
}
|
|
|
|
inline double inverse_lerp(double p_from, double p_to, double p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
inline float inverse_lerp(float p_from, float p_to, float p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
|
|
inline double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
inline float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
|
|
inline bool is_nan(float p_val) {
|
|
return std::isnan(p_val);
|
|
}
|
|
|
|
inline bool is_nan(double p_val) {
|
|
return std::isnan(p_val);
|
|
}
|
|
|
|
inline bool is_inf(float p_val) {
|
|
return std::isinf(p_val);
|
|
}
|
|
|
|
inline bool is_inf(double p_val) {
|
|
return std::isinf(p_val);
|
|
}
|
|
|
|
inline bool is_equal_approx(float a, float b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
float tolerance = (float)CMP_EPSILON * abs(a);
|
|
if (tolerance < (float)CMP_EPSILON) {
|
|
tolerance = (float)CMP_EPSILON;
|
|
}
|
|
return abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_equal_approx(float a, float b, float tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_zero_approx(float s) {
|
|
return abs(s) < (float)CMP_EPSILON;
|
|
}
|
|
|
|
inline bool is_equal_approx(double a, double b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
double tolerance = CMP_EPSILON * abs(a);
|
|
if (tolerance < CMP_EPSILON) {
|
|
tolerance = CMP_EPSILON;
|
|
}
|
|
return abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_equal_approx(double a, double b, double tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_zero_approx(double s) {
|
|
return abs(s) < CMP_EPSILON;
|
|
}
|
|
|
|
inline float absf(float g) {
|
|
union {
|
|
float f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
u.f = g;
|
|
u.i &= 2147483647u;
|
|
return u.f;
|
|
}
|
|
|
|
inline double absd(double g) {
|
|
union {
|
|
double d;
|
|
uint64_t i;
|
|
} u;
|
|
u.d = g;
|
|
u.i &= (uint64_t)9223372036854775807ull;
|
|
return u.d;
|
|
}
|
|
|
|
inline double smoothstep(double p_from, double p_to, double p_weight) {
|
|
if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
|
|
return p_from;
|
|
}
|
|
double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
|
|
return x * x * (3.0 - 2.0 * x);
|
|
}
|
|
inline float smoothstep(float p_from, float p_to, float p_weight) {
|
|
if (is_equal_approx(p_from, p_to)) {
|
|
return p_from;
|
|
}
|
|
float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
|
|
return x * x * (3.0f - 2.0f * x);
|
|
}
|
|
|
|
inline double move_toward(double p_from, double p_to, double p_delta) {
|
|
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
inline float move_toward(float p_from, float p_to, float p_delta) {
|
|
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
inline double linear2db(double p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321;
|
|
}
|
|
inline float linear2db(float p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321f;
|
|
}
|
|
|
|
inline double db2linear(double p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422);
|
|
}
|
|
inline float db2linear(float p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422f);
|
|
}
|
|
|
|
inline double round(double p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
|
|
}
|
|
inline float round(float p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
|
|
}
|
|
|
|
inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
|
|
int64_t range = max - min;
|
|
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
|
|
}
|
|
|
|
inline float wrapf(real_t value, real_t min, real_t max) {
|
|
const real_t range = max - min;
|
|
return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
|
|
}
|
|
|
|
inline float fract(float value) {
|
|
return value - floor(value);
|
|
}
|
|
|
|
inline double fract(double value) {
|
|
return value - floor(value);
|
|
}
|
|
|
|
inline float pingpong(float value, float length) {
|
|
return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
|
|
}
|
|
|
|
inline double pingpong(double value, double length) {
|
|
return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
|
|
}
|
|
|
|
// This function should be as fast as possible and rounding mode should not matter.
|
|
inline int fast_ftoi(float a) {
|
|
static int b;
|
|
|
|
#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
|
|
b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER < 1800
|
|
__asm fld a __asm fistp b
|
|
/*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
|
|
// use AT&T inline assembly style, document that
|
|
// we use memory as output (=m) and input (m)
|
|
__asm__ __volatile__ (
|
|
"flds %1 \n\t"
|
|
"fistpl %0 \n\t"
|
|
: "=m" (b)
|
|
: "m" (a));*/
|
|
|
|
#else
|
|
b = lrintf(a); // assuming everything but msvc 2012 or earlier has lrint
|
|
#endif
|
|
return b;
|
|
}
|
|
|
|
inline double snapped(double p_value, double p_step) {
|
|
if (p_step != 0) {
|
|
p_value = Math::floor(p_value / p_step + 0.5) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
inline float snap_scalar(float p_offset, float p_step, float p_target) {
|
|
return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target;
|
|
}
|
|
|
|
inline float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
|
|
if (p_step != 0) {
|
|
float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset;
|
|
float b = a;
|
|
if (p_target >= 0) {
|
|
b -= p_separation;
|
|
} else {
|
|
b += p_step;
|
|
}
|
|
return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
|
|
}
|
|
return p_target;
|
|
}
|
|
|
|
} // namespace Math
|
|
} // namespace godot
|
|
|
|
#endif // GODOT_MATH_HPP
|