godot-cpp/include/core/Basis.hpp

422 lines
9.9 KiB
C++

#ifndef BASIS_H
#define BASIS_H
#include <gdnative/basis.h>
#include "Defs.hpp"
#include "Vector3.hpp"
namespace godot {
class Quat;
class Basis {
private:
// This helper template is for mimicking the behavior difference between the engine
// and script interfaces that logically script sees matrices as column major, while
// the engine stores them in row major to efficiently take advantage of SIMD
// instructions in case of matrix-vector multiplications.
// With this helper template native scripts see the data as if it was column major
// without actually transposing the basis matrix at the script-engine boundary.
template <int column>
class ColumnVector3 {
private:
template <int column1, int component>
class ColumnVectorComponent {
private:
Vector3 elements[3];
protected:
inline ColumnVectorComponent<column1, component> &operator=(const ColumnVectorComponent<column1, component> &p_value) {
return *this = real_t(p_value);
}
inline ColumnVectorComponent(const ColumnVectorComponent<column1, component> &p_value) {
*this = real_t(p_value);
}
inline ColumnVectorComponent<column1, component> &operator=(const real_t &p_value) {
elements[component][column1] = p_value;
return *this;
}
inline operator real_t() const {
return elements[component][column1];
}
};
public:
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
ColumnVectorComponent<column, 0> x;
ColumnVectorComponent<column, 1> y;
ColumnVectorComponent<column, 2> z;
Vector3 elements[3]; // Not for direct access, use [] operator instead
};
inline ColumnVector3<column> &operator=(const ColumnVector3<column> &p_value) {
return *this = Vector3(p_value);
}
inline ColumnVector3(const ColumnVector3<column> &p_value) {
*this = Vector3(p_value);
}
inline ColumnVector3<column> &operator=(const Vector3 &p_value) {
elements[0][column] = p_value.x;
elements[1][column] = p_value.y;
elements[2][column] = p_value.z;
return *this;
}
inline operator Vector3() const {
return Vector3(elements[0][column], elements[1][column], elements[2][column]);
}
// Unfortunately, we also need to replicate the other interfaces of Vector3 in
// order for being able to directly operate on these "meta-Vector3" objects without
// an explicit cast or an intermediate assignment to a real Vector3 object.
inline const real_t &operator[](int p_axis) const {
return elements[p_axis][column];
}
inline real_t &operator[](int p_axis) {
return elements[p_axis][column];
}
inline ColumnVector3<column> &operator+=(const Vector3 &p_v) {
return *this = *this + p_v;
}
inline Vector3 operator+(const Vector3 &p_v) const {
return Vector3(*this) + p_v;
}
inline ColumnVector3<column> &operator-=(const Vector3 &p_v) {
return *this = *this - p_v;
}
inline Vector3 operator-(const Vector3 &p_v) const {
return Vector3(*this) - p_v;
}
inline ColumnVector3<column> &operator*=(const Vector3 &p_v) {
return *this = *this * p_v;
}
inline Vector3 operator*(const Vector3 &p_v) const {
return Vector3(*this) * p_v;
}
inline ColumnVector3<column> &operator/=(const Vector3 &p_v) {
return *this = *this / p_v;
}
inline Vector3 operator/(const Vector3 &p_v) const {
return Vector3(*this) / p_v;
}
inline ColumnVector3<column> &operator*=(real_t p_scalar) {
return *this = *this * p_scalar;
}
inline Vector3 operator*(real_t p_scalar) const {
return Vector3(*this) * p_scalar;
}
inline ColumnVector3<column> &operator/=(real_t p_scalar) {
return *this = *this / p_scalar;
}
inline Vector3 operator/(real_t p_scalar) const {
return Vector3(*this) / p_scalar;
}
inline Vector3 operator-() const {
return -Vector3(*this);
}
inline bool operator==(const Vector3 &p_v) const {
return Vector3(*this) == p_v;
}
inline bool operator!=(const Vector3 &p_v) const {
return Vector3(*this) != p_v;
}
inline bool operator<(const Vector3 &p_v) const {
return Vector3(*this) < p_v;
}
inline bool operator<=(const Vector3 &p_v) const {
return Vector3(*this) <= p_v;
}
inline Vector3 abs() const {
return Vector3(*this).abs();
}
inline Vector3 ceil() const {
return Vector3(*this).ceil();
}
inline Vector3 cross(const Vector3 &b) const {
return Vector3(*this).cross(b);
}
inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
return Vector3(*this).linear_interpolate(p_b, p_t);
}
inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t);
}
inline Vector3 bounce(const Vector3 &p_normal) const {
return Vector3(*this).bounce(p_normal);
}
inline real_t length() const {
return Vector3(*this).length();
}
inline real_t length_squared() const {
return Vector3(*this).length_squared();
}
inline real_t distance_squared_to(const Vector3 &b) const {
return Vector3(*this).distance_squared_to(b);
}
inline real_t distance_to(const Vector3 &b) const {
return Vector3(*this).distance_to(b);
}
inline real_t dot(const Vector3 &b) const {
return Vector3(*this).dot(b);
}
inline real_t angle_to(const Vector3 &b) const {
return Vector3(*this).angle_to(b);
}
inline Vector3 floor() const {
return Vector3(*this).floor();
}
inline Vector3 inverse() const {
return Vector3(*this).inverse();
}
inline bool is_normalized() const {
return Vector3(*this).is_normalized();
}
inline Basis outer(const Vector3 &b) const {
return Vector3(*this).outer(b);
}
inline int max_axis() const {
return Vector3(*this).max_axis();
}
inline int min_axis() const {
return Vector3(*this).min_axis();
}
inline void normalize() {
Vector3 v = *this;
v.normalize();
*this = v;
}
inline Vector3 normalized() const {
return Vector3(*this).normalized();
}
inline Vector3 reflect(const Vector3 &by) const {
return Vector3(*this).reflect(by);
}
inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
return Vector3(*this).rotated(axis, phi);
}
inline void rotate(const Vector3 &p_axis, real_t p_phi) {
Vector3 v = *this;
v.rotate(p_axis, p_phi);
*this = v;
}
inline Vector3 slide(const Vector3 &by) const {
return Vector3(*this).slide(by);
}
inline void snap(real_t p_val) {
Vector3 v = *this;
v.snap(p_val);
*this = v;
}
inline Vector3 snapped(const float by) {
return Vector3(*this).snapped(by);
}
inline operator String() const {
return String(Vector3(*this));
}
};
public:
union {
ColumnVector3<0> x;
ColumnVector3<1> y;
ColumnVector3<2> z;
Vector3 elements[3]; // Not for direct access, use [] operator instead
};
inline Basis(const Basis &p_basis) {
elements[0] = p_basis.elements[0];
elements[1] = p_basis.elements[1];
elements[2] = p_basis.elements[2];
}
inline Basis &operator=(const Basis &p_basis) {
elements[0] = p_basis.elements[0];
elements[1] = p_basis.elements[1];
elements[2] = p_basis.elements[2];
return *this;
}
Basis(const Quat &p_quat); // euler
Basis(const Vector3 &p_euler); // euler
Basis(const Vector3 &p_axis, real_t p_phi);
Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2);
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Basis();
const Vector3 operator[](int axis) const {
return get_axis(axis);
}
ColumnVector3<0> &operator[](int axis) {
// We need to do a little pointer magic to get this to work, because the
// ColumnVector3 template takes the axis as a template parameter.
// Don't touch this unless you're sure what you're doing!
return (reinterpret_cast<Basis *>(reinterpret_cast<real_t *>(this) + axis))->x;
}
void invert();
bool isequal_approx(const Basis &a, const Basis &b) const;
bool is_orthogonal() const;
bool is_rotation() const;
void transpose();
Basis inverse() const;
Basis transposed() const;
real_t determinant() const;
Vector3 get_axis(int p_axis) const;
void set_axis(int p_axis, const Vector3 &p_value);
void rotate(const Vector3 &p_axis, real_t p_phi);
Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
void scale(const Vector3 &p_scale);
Basis scaled(const Vector3 &p_scale) const;
Vector3 get_scale() const;
Vector3 get_euler_xyz() const;
void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
void set_euler_yxz(const Vector3 &p_euler);
inline Vector3 get_euler() const { return get_euler_yxz(); }
inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
// transposed dot products
real_t tdotx(const Vector3 &v) const;
real_t tdoty(const Vector3 &v) const;
real_t tdotz(const Vector3 &v) const;
bool operator==(const Basis &p_matrix) const;
bool operator!=(const Basis &p_matrix) const;
Vector3 xform(const Vector3 &p_vector) const;
Vector3 xform_inv(const Vector3 &p_vector) const;
void operator*=(const Basis &p_matrix);
Basis operator*(const Basis &p_matrix) const;
void operator+=(const Basis &p_matrix);
Basis operator+(const Basis &p_matrix) const;
void operator-=(const Basis &p_matrix);
Basis operator-(const Basis &p_matrix) const;
void operator*=(real_t p_val);
Basis operator*(real_t p_val) const;
int get_orthogonal_index() const; // down below
void set_orthogonal_index(int p_index); // down below
operator String() const;
void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const;
/* create / set */
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
Vector3 get_column(int i) const;
Vector3 get_row(int i) const;
Vector3 get_main_diagonal() const;
void set_row(int i, const Vector3 &p_row);
Basis transpose_xform(const Basis &m) const;
void orthonormalize();
Basis orthonormalized() const;
bool is_symmetric() const;
Basis diagonalize();
operator Quat() const;
};
} // namespace godot
#endif // BASIS_H