482 lines
13 KiB
C++
482 lines
13 KiB
C++
/*************************************************************************/
|
|
/* math.hpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef GODOT_MATH_H
|
|
#define GODOT_MATH_H
|
|
|
|
#include <godot_cpp/core/defs.hpp>
|
|
|
|
#include <godot/gdnative_interface.h>
|
|
|
|
#include <cmath>
|
|
|
|
namespace godot {
|
|
namespace Math {
|
|
|
|
// This epsilon should match the one used by Godot for consistency.
|
|
// Using `f` when `real_t` is float.
|
|
#define CMP_EPSILON 0.00001f
|
|
#define CMP_EPSILON2 (CMP_EPSILON * CMP_EPSILON)
|
|
|
|
// This epsilon is for values related to a unit size (scalar or vector len).
|
|
#ifdef PRECISE_MATH_CHECKS
|
|
#define UNIT_EPSILON 0.00001
|
|
#else
|
|
// Tolerate some more floating point error normally.
|
|
#define UNIT_EPSILON 0.001
|
|
#endif
|
|
|
|
#define Math_SQRT12 0.7071067811865475244008443621048490
|
|
#define Math_SQRT2 1.4142135623730950488016887242
|
|
#define Math_LN2 0.6931471805599453094172321215
|
|
#define Math_PI 3.1415926535897932384626433833
|
|
#define Math_TAU 6.2831853071795864769252867666
|
|
#define Math_E 2.7182818284590452353602874714
|
|
#define Math_INF INFINITY
|
|
#define Math_NAN NAN
|
|
|
|
// Windows badly defines a lot of stuff we'll never use. Undefine it.
|
|
#ifdef _WIN32
|
|
#undef MIN // override standard definition
|
|
#undef MAX // override standard definition
|
|
#undef CLAMP // override standard definition
|
|
#endif
|
|
|
|
// Generic ABS function, for math uses please use Math::abs.
|
|
#ifndef ABS
|
|
#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
|
|
#endif
|
|
|
|
#ifndef SIGN
|
|
#define SIGN(m_v) (((m_v) == 0) ? (0.0) : (((m_v) < 0) ? (-1.0) : (+1.0)))
|
|
#endif
|
|
|
|
#ifndef MIN
|
|
#define MIN(m_a, m_b) (((m_a) < (m_b)) ? (m_a) : (m_b))
|
|
#endif
|
|
|
|
#ifndef MAX
|
|
#define MAX(m_a, m_b) (((m_a) > (m_b)) ? (m_a) : (m_b))
|
|
#endif
|
|
|
|
#ifndef CLAMP
|
|
#define CLAMP(m_a, m_min, m_max) (((m_a) < (m_min)) ? (m_min) : (((m_a) > (m_max)) ? m_max : m_a))
|
|
#endif
|
|
|
|
// Functions reproduced as in Godot's source code `math_funcs.h`.
|
|
// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
|
|
|
|
inline double fmod(double p_x, double p_y) {
|
|
return ::fmod(p_x, p_y);
|
|
}
|
|
inline float fmod(float p_x, float p_y) {
|
|
return ::fmodf(p_x, p_y);
|
|
}
|
|
|
|
inline double fposmod(double p_x, double p_y) {
|
|
double value = Math::fmod(p_x, p_y);
|
|
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
inline float fposmod(float p_x, float p_y) {
|
|
float value = Math::fmod(p_x, p_y);
|
|
if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
|
|
inline float fposmodp(float p_x, float p_y) {
|
|
float value = Math::fmod(p_x, p_y);
|
|
if (value < 0) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
inline double fposmodp(double p_x, double p_y) {
|
|
double value = Math::fmod(p_x, p_y);
|
|
if (value < 0) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
|
|
inline double floor(double p_x) {
|
|
return ::floor(p_x);
|
|
}
|
|
inline float floor(float p_x) {
|
|
return ::floorf(p_x);
|
|
}
|
|
|
|
inline double ceil(double p_x) {
|
|
return ::ceil(p_x);
|
|
}
|
|
inline float ceil(float p_x) {
|
|
return ::ceilf(p_x);
|
|
}
|
|
|
|
inline double exp(double p_x) {
|
|
return ::exp(p_x);
|
|
}
|
|
inline float exp(float p_x) {
|
|
return ::expf(p_x);
|
|
}
|
|
|
|
inline double sin(double p_x) {
|
|
return ::sin(p_x);
|
|
}
|
|
inline float sin(float p_x) {
|
|
return ::sinf(p_x);
|
|
}
|
|
|
|
inline double cos(double p_x) {
|
|
return ::cos(p_x);
|
|
}
|
|
inline float cos(float p_x) {
|
|
return ::cosf(p_x);
|
|
}
|
|
|
|
inline double tan(double p_x) {
|
|
return ::tan(p_x);
|
|
}
|
|
inline float tan(float p_x) {
|
|
return ::tanf(p_x);
|
|
}
|
|
|
|
inline double sinh(double p_x) {
|
|
return ::sinh(p_x);
|
|
}
|
|
inline float sinh(float p_x) {
|
|
return ::sinhf(p_x);
|
|
}
|
|
|
|
inline float sinc(float p_x) {
|
|
return p_x == 0 ? 1 : ::sin(p_x) / p_x;
|
|
}
|
|
inline double sinc(double p_x) {
|
|
return p_x == 0 ? 1 : ::sin(p_x) / p_x;
|
|
}
|
|
|
|
inline float sincn(float p_x) {
|
|
return (float)sinc(Math_PI * p_x);
|
|
}
|
|
inline double sincn(double p_x) {
|
|
return sinc(Math_PI * p_x);
|
|
}
|
|
|
|
inline double cosh(double p_x) {
|
|
return ::cosh(p_x);
|
|
}
|
|
inline float cosh(float p_x) {
|
|
return ::coshf(p_x);
|
|
}
|
|
|
|
inline double tanh(double p_x) {
|
|
return ::tanh(p_x);
|
|
}
|
|
inline float tanh(float p_x) {
|
|
return ::tanhf(p_x);
|
|
}
|
|
|
|
inline double asin(double p_x) {
|
|
return ::asin(p_x);
|
|
}
|
|
inline float asin(float p_x) {
|
|
return ::asinf(p_x);
|
|
}
|
|
|
|
inline double acos(double p_x) {
|
|
return ::acos(p_x);
|
|
}
|
|
inline float acos(float p_x) {
|
|
return ::acosf(p_x);
|
|
}
|
|
|
|
inline double atan(double p_x) {
|
|
return ::atan(p_x);
|
|
}
|
|
inline float atan(float p_x) {
|
|
return ::atanf(p_x);
|
|
}
|
|
|
|
inline double atan2(double p_y, double p_x) {
|
|
return ::atan2(p_y, p_x);
|
|
}
|
|
inline float atan2(float p_y, float p_x) {
|
|
return ::atan2f(p_y, p_x);
|
|
}
|
|
|
|
inline double sqrt(double p_x) {
|
|
return ::sqrt(p_x);
|
|
}
|
|
inline float sqrt(float p_x) {
|
|
return ::sqrtf(p_x);
|
|
}
|
|
|
|
inline double pow(double p_x, double p_y) {
|
|
return ::pow(p_x, p_y);
|
|
}
|
|
inline float pow(float p_x, float p_y) {
|
|
return ::powf(p_x, p_y);
|
|
}
|
|
|
|
inline double log(double p_x) {
|
|
return ::log(p_x);
|
|
}
|
|
inline float log(float p_x) {
|
|
return ::logf(p_x);
|
|
}
|
|
|
|
inline float lerp(float minv, float maxv, float t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
inline double lerp(double minv, double maxv, double t) {
|
|
return minv + t * (maxv - minv);
|
|
}
|
|
|
|
inline double lerp_angle(double p_from, double p_to, double p_weight) {
|
|
double difference = fmod(p_to - p_from, Math_TAU);
|
|
double distance = fmod(2.0 * difference, Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
inline float lerp_angle(float p_from, float p_to, float p_weight) {
|
|
float difference = fmod(p_to - p_from, (float)Math_TAU);
|
|
float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T clamp(T x, T minv, T maxv) {
|
|
if (x < minv) {
|
|
return minv;
|
|
}
|
|
if (x > maxv) {
|
|
return maxv;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T max(T a, T b) {
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T sign(T x) {
|
|
return static_cast<T>(x < 0 ? -1 : 1);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T abs(T x) {
|
|
return std::abs(x);
|
|
}
|
|
|
|
inline double deg2rad(double p_y) {
|
|
return p_y * Math_PI / 180.0;
|
|
}
|
|
inline float deg2rad(float p_y) {
|
|
return p_y * static_cast<float>(Math_PI) / 180.f;
|
|
}
|
|
|
|
inline double rad2deg(double p_y) {
|
|
return p_y * 180.0 / Math_PI;
|
|
}
|
|
inline float rad2deg(float p_y) {
|
|
return p_y * 180.f / static_cast<float>(Math_PI);
|
|
}
|
|
|
|
inline double inverse_lerp(double p_from, double p_to, double p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
inline float inverse_lerp(float p_from, float p_to, float p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
|
|
inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
|
|
return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
|
|
}
|
|
|
|
inline bool is_equal_approx(real_t a, real_t b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
real_t tolerance = CMP_EPSILON * std::abs(a);
|
|
if (tolerance < CMP_EPSILON) {
|
|
tolerance = CMP_EPSILON;
|
|
}
|
|
return std::abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return std::abs(a - b) < tolerance;
|
|
}
|
|
|
|
inline bool is_zero_approx(real_t s) {
|
|
return std::abs(s) < CMP_EPSILON;
|
|
}
|
|
|
|
inline double smoothstep(double p_from, double p_to, double p_weight) {
|
|
if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
|
|
return p_from;
|
|
}
|
|
double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
|
|
return x * x * (3.0 - 2.0 * x);
|
|
}
|
|
inline float smoothstep(float p_from, float p_to, float p_weight) {
|
|
if (is_equal_approx(p_from, p_to)) {
|
|
return p_from;
|
|
}
|
|
float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
|
|
return x * x * (3.0f - 2.0f * x);
|
|
}
|
|
|
|
inline double move_toward(double p_from, double p_to, double p_delta) {
|
|
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
inline float move_toward(float p_from, float p_to, float p_delta) {
|
|
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
inline double linear2db(double p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321;
|
|
}
|
|
inline float linear2db(float p_linear) {
|
|
return log(p_linear) * 8.6858896380650365530225783783321f;
|
|
}
|
|
|
|
inline double db2linear(double p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422);
|
|
}
|
|
inline float db2linear(float p_db) {
|
|
return exp(p_db * 0.11512925464970228420089957273422f);
|
|
}
|
|
|
|
inline double round(double p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
|
|
}
|
|
inline float round(float p_val) {
|
|
return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
|
|
}
|
|
|
|
inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
|
|
int64_t range = max - min;
|
|
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
|
|
}
|
|
|
|
inline float wrapf(real_t value, real_t min, real_t max) {
|
|
const real_t range = max - min;
|
|
return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
|
|
}
|
|
|
|
inline float stepify(float p_value, float p_step) {
|
|
if (p_step != 0) {
|
|
p_value = floor(p_value / p_step + 0.5f) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
inline double stepify(double p_value, double p_step) {
|
|
if (p_step != 0) {
|
|
p_value = floor(p_value / p_step + 0.5) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
inline unsigned int next_power_of_2(unsigned int x) {
|
|
if (x == 0)
|
|
return 0;
|
|
|
|
--x;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
|
|
return ++x;
|
|
}
|
|
|
|
// This function should be as fast as possible and rounding mode should not matter.
|
|
inline int fast_ftoi(float a) {
|
|
static int b;
|
|
|
|
#if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
|
|
b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
|
|
|
|
#elif defined(_MSC_VER) && _MSC_VER < 1800
|
|
__asm fld a __asm fistp b
|
|
/*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
|
|
// use AT&T inline assembly style, document that
|
|
// we use memory as output (=m) and input (m)
|
|
__asm__ __volatile__ (
|
|
"flds %1 \n\t"
|
|
"fistpl %0 \n\t"
|
|
: "=m" (b)
|
|
: "m" (a));*/
|
|
|
|
#else
|
|
b = lrintf(a); // assuming everything but msvc 2012 or earlier has lrint
|
|
#endif
|
|
return b;
|
|
}
|
|
|
|
inline double snapped(double p_value, double p_step) {
|
|
if (p_step != 0) {
|
|
p_value = Math::floor(p_value / p_step + 0.5) * p_step;
|
|
}
|
|
return p_value;
|
|
}
|
|
|
|
} // namespace Math
|
|
} // namespace godot
|
|
|
|
#endif // GODOT_MATH_H
|