107 lines
3.5 KiB
C++
107 lines
3.5 KiB
C++
#ifndef TRANSFORM2D_H
|
|
#define TRANSFORM2D_H
|
|
|
|
#include "Vector2.hpp"
|
|
|
|
namespace godot {
|
|
|
|
typedef Vector2 Size2;
|
|
|
|
struct Rect2;
|
|
|
|
struct Transform2D {
|
|
static const Transform2D IDENTITY;
|
|
static const Transform2D FLIP_X;
|
|
static const Transform2D FLIP_Y;
|
|
|
|
// Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper":
|
|
// M = (elements[0][0] elements[1][0])
|
|
// (elements[0][1] elements[1][1])
|
|
// This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i].
|
|
// Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here.
|
|
// This requires additional care when working with explicit indices.
|
|
// See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading.
|
|
|
|
// Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down,
|
|
// and angle is measure from +X to +Y in a clockwise-fashion.
|
|
|
|
Vector2 elements[3];
|
|
|
|
inline real_t tdotx(const Vector2 &v) const { return elements[0][0] * v.x + elements[1][0] * v.y; }
|
|
inline real_t tdoty(const Vector2 &v) const { return elements[0][1] * v.x + elements[1][1] * v.y; }
|
|
|
|
inline const Vector2 &operator[](int p_idx) const { return elements[p_idx]; }
|
|
inline Vector2 &operator[](int p_idx) { return elements[p_idx]; }
|
|
|
|
inline Vector2 get_axis(int p_axis) const {
|
|
ERR_FAIL_INDEX_V(p_axis, 3, Vector2());
|
|
return elements[p_axis];
|
|
}
|
|
inline void set_axis(int p_axis, const Vector2 &p_vec) {
|
|
ERR_FAIL_INDEX(p_axis, 3);
|
|
elements[p_axis] = p_vec;
|
|
}
|
|
|
|
void invert();
|
|
Transform2D inverse() const;
|
|
|
|
void affine_invert();
|
|
Transform2D affine_inverse() const;
|
|
|
|
void set_rotation(real_t p_phi);
|
|
real_t get_rotation() const;
|
|
void set_rotation_and_scale(real_t p_phi, const Size2 &p_scale);
|
|
void rotate(real_t p_phi);
|
|
|
|
void scale(const Size2 &p_scale);
|
|
void scale_basis(const Size2 &p_scale);
|
|
void translate(real_t p_tx, real_t p_ty);
|
|
void translate(const Vector2 &p_translation);
|
|
|
|
real_t basis_determinant() const;
|
|
|
|
Size2 get_scale() const;
|
|
|
|
inline const Vector2 &get_origin() const { return elements[2]; }
|
|
inline void set_origin(const Vector2 &p_origin) { elements[2] = p_origin; }
|
|
|
|
Transform2D scaled(const Size2 &p_scale) const;
|
|
Transform2D basis_scaled(const Size2 &p_scale) const;
|
|
Transform2D translated(const Vector2 &p_offset) const;
|
|
Transform2D rotated(real_t p_phi) const;
|
|
|
|
Transform2D untranslated() const;
|
|
|
|
void orthonormalize();
|
|
Transform2D orthonormalized() const;
|
|
|
|
bool operator==(const Transform2D &p_transform) const;
|
|
bool operator!=(const Transform2D &p_transform) const;
|
|
|
|
void operator*=(const Transform2D &p_transform);
|
|
Transform2D operator*(const Transform2D &p_transform) const;
|
|
|
|
Transform2D interpolate_with(const Transform2D &p_transform, real_t p_c) const;
|
|
|
|
Vector2 basis_xform(const Vector2 &p_vec) const;
|
|
Vector2 basis_xform_inv(const Vector2 &p_vec) const;
|
|
Vector2 xform(const Vector2 &p_vec) const;
|
|
Vector2 xform_inv(const Vector2 &p_vec) const;
|
|
Rect2 xform(const Rect2 &p_vec) const;
|
|
Rect2 xform_inv(const Rect2 &p_vec) const;
|
|
|
|
operator String() const;
|
|
|
|
Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy);
|
|
|
|
Transform2D(real_t p_rot, const Vector2 &p_pos);
|
|
inline Transform2D() {
|
|
elements[0][0] = 1.0;
|
|
elements[1][1] = 1.0;
|
|
}
|
|
};
|
|
|
|
} // namespace godot
|
|
|
|
#endif // TRANSFORM2D_H
|