320 lines
7.0 KiB
C++
320 lines
7.0 KiB
C++
#include "Transform.hpp"
|
|
|
|
#include "Basis.hpp"
|
|
|
|
#include "Plane.hpp"
|
|
#include "AABB.hpp"
|
|
|
|
#include "Quat.hpp"
|
|
|
|
namespace godot {
|
|
|
|
|
|
|
|
Transform Transform::inverse_xform(const Transform& t) const {
|
|
|
|
Vector3 v = t.origin - origin;
|
|
return Transform(basis.transpose_xform(t.basis),
|
|
basis.xform(v));
|
|
}
|
|
|
|
void Transform::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz) {
|
|
|
|
basis.elements[0][0]=xx;
|
|
basis.elements[0][1]=xy;
|
|
basis.elements[0][2]=xz;
|
|
basis.elements[1][0]=yx;
|
|
basis.elements[1][1]=yy;
|
|
basis.elements[1][2]=yz;
|
|
basis.elements[2][0]=zx;
|
|
basis.elements[2][1]=zy;
|
|
basis.elements[2][2]=zz;
|
|
origin.x=tx;
|
|
origin.y=ty;
|
|
origin.z=tz;
|
|
}
|
|
|
|
|
|
|
|
Vector3 Transform::xform(const Vector3& p_vector) const {
|
|
|
|
return Vector3(
|
|
basis[0].dot(p_vector)+origin.x,
|
|
basis[1].dot(p_vector)+origin.y,
|
|
basis[2].dot(p_vector)+origin.z
|
|
);
|
|
}
|
|
Vector3 Transform::xform_inv(const Vector3& p_vector) const {
|
|
|
|
Vector3 v = p_vector - origin;
|
|
|
|
return Vector3(
|
|
(basis.elements[0][0]*v.x ) + ( basis.elements[1][0]*v.y ) + ( basis.elements[2][0]*v.z ),
|
|
(basis.elements[0][1]*v.x ) + ( basis.elements[1][1]*v.y ) + ( basis.elements[2][1]*v.z ),
|
|
(basis.elements[0][2]*v.x ) + ( basis.elements[1][2]*v.y ) + ( basis.elements[2][2]*v.z )
|
|
);
|
|
}
|
|
|
|
Plane Transform::xform(const Plane& p_plane) const {
|
|
|
|
|
|
Vector3 point=p_plane.normal*p_plane.d;
|
|
Vector3 point_dir=point+p_plane.normal;
|
|
point=xform(point);
|
|
point_dir=xform(point_dir);
|
|
|
|
Vector3 normal=point_dir-point;
|
|
normal.normalize();
|
|
real_t d=normal.dot(point);
|
|
|
|
return Plane(normal,d);
|
|
|
|
}
|
|
Plane Transform::xform_inv(const Plane& p_plane) const {
|
|
|
|
Vector3 point=p_plane.normal*p_plane.d;
|
|
Vector3 point_dir=point+p_plane.normal;
|
|
point=xform_inv(point);
|
|
point_dir=xform_inv(point_dir);
|
|
|
|
Vector3 normal=point_dir-point;
|
|
normal.normalize();
|
|
real_t d=normal.dot(point);
|
|
|
|
return Plane(normal,d);
|
|
|
|
}
|
|
|
|
AABB Transform::xform(const AABB& p_aabb) const {
|
|
/* define vertices */
|
|
Vector3 x=basis.get_axis(0)*p_aabb.size.x;
|
|
Vector3 y=basis.get_axis(1)*p_aabb.size.y;
|
|
Vector3 z=basis.get_axis(2)*p_aabb.size.z;
|
|
Vector3 pos = xform( p_aabb.position );
|
|
//could be even further optimized
|
|
AABB new_aabb;
|
|
new_aabb.position=pos;
|
|
new_aabb.expand_to( pos+x );
|
|
new_aabb.expand_to( pos+y );
|
|
new_aabb.expand_to( pos+z );
|
|
new_aabb.expand_to( pos+x+y );
|
|
new_aabb.expand_to( pos+x+z );
|
|
new_aabb.expand_to( pos+y+z );
|
|
new_aabb.expand_to( pos+x+y+z );
|
|
return new_aabb;
|
|
|
|
}
|
|
AABB Transform::xform_inv(const AABB& p_aabb) const {
|
|
|
|
/* define vertices */
|
|
Vector3 vertices[8]={
|
|
Vector3(p_aabb.position.x+p_aabb.size.x, p_aabb.position.y+p_aabb.size.y, p_aabb.position.z+p_aabb.size.z),
|
|
Vector3(p_aabb.position.x+p_aabb.size.x, p_aabb.position.y+p_aabb.size.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x+p_aabb.size.x, p_aabb.position.y, p_aabb.position.z+p_aabb.size.z),
|
|
Vector3(p_aabb.position.x+p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y+p_aabb.size.y, p_aabb.position.z+p_aabb.size.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y+p_aabb.size.y, p_aabb.position.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z+p_aabb.size.z),
|
|
Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
|
|
};
|
|
|
|
|
|
AABB ret;
|
|
|
|
ret.position=xform_inv(vertices[0]);
|
|
|
|
for (int i=1;i<8;i++) {
|
|
|
|
ret.expand_to( xform_inv(vertices[i]) );
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
void Transform::affine_invert() {
|
|
|
|
basis.invert();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::affine_inverse() const {
|
|
|
|
Transform ret=*this;
|
|
ret.affine_invert();
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
void Transform::invert() {
|
|
|
|
basis.transpose();
|
|
origin = basis.xform(-origin);
|
|
}
|
|
|
|
Transform Transform::inverse() const {
|
|
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
|
|
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
|
|
Transform ret=*this;
|
|
ret.invert();
|
|
return ret;
|
|
}
|
|
|
|
|
|
void Transform::rotate(const Vector3& p_axis,real_t p_phi) {
|
|
|
|
*this = rotated(p_axis, p_phi);
|
|
}
|
|
|
|
Transform Transform::rotated(const Vector3& p_axis,real_t p_phi) const{
|
|
|
|
return Transform(Basis( p_axis, p_phi ), Vector3()) * (*this);
|
|
}
|
|
|
|
void Transform::rotate_basis(const Vector3& p_axis,real_t p_phi) {
|
|
|
|
basis.rotate(p_axis,p_phi);
|
|
}
|
|
|
|
Transform Transform::looking_at( const Vector3& p_target, const Vector3& p_up ) const {
|
|
|
|
Transform t = *this;
|
|
t.set_look_at(origin,p_target,p_up);
|
|
return t;
|
|
}
|
|
|
|
void Transform::set_look_at( const Vector3& p_eye, const Vector3& p_target, const Vector3& p_up ) {
|
|
|
|
// Reference: MESA source code
|
|
Vector3 v_x, v_y, v_z;
|
|
|
|
/* Make rotation matrix */
|
|
|
|
/* Z vector */
|
|
v_z = p_eye - p_target;
|
|
|
|
v_z.normalize();
|
|
|
|
v_y = p_up;
|
|
|
|
|
|
v_x=v_y.cross(v_z);
|
|
|
|
/* Recompute Y = Z cross X */
|
|
v_y=v_z.cross(v_x);
|
|
|
|
v_x.normalize();
|
|
v_y.normalize();
|
|
|
|
basis.set_axis(0,v_x);
|
|
basis.set_axis(1,v_y);
|
|
basis.set_axis(2,v_z);
|
|
origin=p_eye;
|
|
|
|
}
|
|
|
|
Transform Transform::interpolate_with(const Transform& p_transform, real_t p_c) const {
|
|
|
|
/* not sure if very "efficient" but good enough? */
|
|
|
|
Vector3 src_scale = basis.get_scale();
|
|
Quat src_rot = basis;
|
|
Vector3 src_loc = origin;
|
|
|
|
Vector3 dst_scale = p_transform.basis.get_scale();
|
|
Quat dst_rot = p_transform.basis;
|
|
Vector3 dst_loc = p_transform.origin;
|
|
|
|
Transform dst;
|
|
dst.basis=src_rot.slerp(dst_rot,p_c);
|
|
dst.basis.scale(src_scale.linear_interpolate(dst_scale,p_c));
|
|
dst.origin=src_loc.linear_interpolate(dst_loc,p_c);
|
|
|
|
return dst;
|
|
}
|
|
|
|
void Transform::scale(const Vector3& p_scale) {
|
|
|
|
basis.scale(p_scale);
|
|
origin*=p_scale;
|
|
}
|
|
|
|
Transform Transform::scaled(const Vector3& p_scale) const {
|
|
|
|
Transform t = *this;
|
|
t.scale(p_scale);
|
|
return t;
|
|
}
|
|
|
|
void Transform::scale_basis(const Vector3& p_scale) {
|
|
|
|
basis.scale(p_scale);
|
|
}
|
|
|
|
void Transform::translate( real_t p_tx, real_t p_ty, real_t p_tz) {
|
|
translate( Vector3(p_tx,p_ty,p_tz) );
|
|
|
|
}
|
|
void Transform::translate( const Vector3& p_translation ) {
|
|
|
|
for( int i = 0; i < 3; i++ ) {
|
|
origin[i] += basis[i].dot(p_translation);
|
|
}
|
|
}
|
|
|
|
Transform Transform::translated( const Vector3& p_translation ) const {
|
|
|
|
Transform t=*this;
|
|
t.translate(p_translation);
|
|
return t;
|
|
}
|
|
|
|
void Transform::orthonormalize() {
|
|
|
|
basis.orthonormalize();
|
|
}
|
|
|
|
Transform Transform::orthonormalized() const {
|
|
|
|
Transform _copy = *this;
|
|
_copy.orthonormalize();
|
|
return _copy;
|
|
}
|
|
|
|
bool Transform::operator==(const Transform& p_transform) const {
|
|
|
|
return (basis==p_transform.basis && origin==p_transform.origin);
|
|
}
|
|
bool Transform::operator!=(const Transform& p_transform) const {
|
|
|
|
return (basis!=p_transform.basis || origin!=p_transform.origin);
|
|
}
|
|
|
|
void Transform::operator*=(const Transform& p_transform) {
|
|
|
|
origin=xform(p_transform.origin);
|
|
basis*=p_transform.basis;
|
|
}
|
|
|
|
Transform Transform::operator*(const Transform& p_transform) const {
|
|
|
|
Transform t=*this;
|
|
t*=p_transform;
|
|
return t;
|
|
}
|
|
|
|
Transform::operator String() const {
|
|
|
|
return basis.operator String() + " - " + origin.operator String();
|
|
}
|
|
|
|
|
|
Transform::Transform(const Basis& p_basis, const Vector3& p_origin) {
|
|
|
|
basis=p_basis;
|
|
origin=p_origin;
|
|
}
|
|
|
|
}
|