#include "Basis.hpp" #include "Defs.hpp" #include "Vector3.hpp" #include "Quat.hpp" #include namespace godot { Basis::Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2) { elements[0]=row0; elements[1]=row1; elements[2]=row2; } Basis::Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { set(xx, xy, xz, yx, yy, yz, zx, zy, zz); } Basis::Basis() { elements[0][0]=1; elements[0][1]=0; elements[0][2]=0; elements[1][0]=0; elements[1][1]=1; elements[1][2]=0; elements[2][0]=0; elements[2][1]=0; elements[2][2]=1; } const Vector3& Basis::operator[](int axis) const { return elements[axis]; } Vector3&Basis:: operator[](int axis) { return elements[axis]; } #define cofac(row1,col1, row2, col2)\ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Basis::invert() { real_t co[3]={ cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = elements[0][0] * co[0]+ elements[0][1] * co[1]+ elements[0][2] * co[2]; ERR_FAIL_COND(det == 0); real_t s = 1.0/det; set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s ); } #undef cofac bool Basis::isequal_approx(const Basis& a, const Basis& b) const { for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false) return false; } } return true; } bool Basis::is_orthogonal() const { Basis id; Basis m = (*this)*transposed(); return isequal_approx(id,m); } bool Basis::is_rotation() const { return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal(); } void Basis::transpose() { std::swap(elements[0][1],elements[1][0]); std::swap(elements[0][2],elements[2][0]); std::swap(elements[1][2],elements[2][1]); } Basis Basis::inverse() const { Basis b = *this; b.invert(); return b; } Basis Basis::transposed() const { Basis b = *this; b.transpose(); return b; } real_t Basis::determinant() const { return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) - elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) + elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]); } Vector3 Basis::get_axis(int p_axis) const { // get actual basis axis (elements is transposed for performance) return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] ); } void Basis::set_axis(int p_axis, const Vector3& p_value) { // get actual basis axis (elements is transposed for performance) elements[0][p_axis]=p_value.x; elements[1][p_axis]=p_value.y; elements[2][p_axis]=p_value.z; } void Basis::rotate(const Vector3& p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const { return Basis(p_axis, p_phi) * (*this); } void Basis::scale( const Vector3& p_scale ) { elements[0][0]*=p_scale.x; elements[0][1]*=p_scale.x; elements[0][2]*=p_scale.x; elements[1][0]*=p_scale.y; elements[1][1]*=p_scale.y; elements[1][2]*=p_scale.y; elements[2][0]*=p_scale.z; elements[2][1]*=p_scale.z; elements[2][2]*=p_scale.z; } Basis Basis::scaled( const Vector3& p_scale ) const { Basis b = *this; b.scale(p_scale); return b; } Vector3 Basis::get_scale() const { // We are assuming M = R.S, and performing a polar decomposition to extract R and S. // FIXME: We eventually need a proper polar decomposition. // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1 // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix. // As such, it works in conjuction with get_rotation(). real_t det_sign = determinant() > 0 ? 1 : -1; return det_sign*Vector3( Vector3(elements[0][0],elements[1][0],elements[2][0]).length(), Vector3(elements[0][1],elements[1][1],elements[2][1]).length(), Vector3(elements[0][2],elements[1][2],elements[2][2]).length() ); } // get_euler_xyz returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). // // The current implementation uses XYZ convention (Z is the first rotation), // so euler.z is the angle of the (first) rotation around Z axis and so on, // // And thus, assuming the matrix is a rotation matrix, this function returns // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. Vector3 Basis::get_euler_xyz() const { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; ERR_FAIL_COND_V(is_rotation() == false, euler); real_t sy = elements[0][2]; if (sy < 1.0) { if (sy > -1.0) { // is this a pure Y rotation? if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = 0; euler.y = atan2(elements[0][2], elements[0][0]); euler.z = 0; } else { euler.x = ::atan2(-elements[1][2], elements[2][2]); euler.y = ::asin(sy); euler.z = ::atan2(-elements[0][1], elements[0][0]); } } else { euler.x = -::atan2(elements[0][1], elements[1][1]); euler.y = -Math_PI / 2.0; euler.z = 0.0; } } else { euler.x = ::atan2(elements[0][1], elements[1][1]); euler.y = Math_PI / 2.0; euler.z = 0.0; } return euler; } // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // The current implementation uses XYZ convention (Z is the first rotation). void Basis::set_euler_xyz(const Vector3 &p_euler) { real_t c, s; c = ::cos(p_euler.x); s = ::sin(p_euler.x); Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = ::cos(p_euler.y); s = ::sin(p_euler.y); Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = ::cos(p_euler.z); s = ::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway *this = xmat * (ymat * zmat); } // get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, // as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned // as the x, y, and z components of a Vector3 respectively. Vector3 Basis::get_euler_yxz() const { // Euler angles in YXZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy // cx*sz cx*cz -sx // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx Vector3 euler; ERR_FAIL_COND_V(is_rotation() == false, euler); real_t m12 = elements[1][2]; if (m12 < 1) { if (m12 > -1) { // is this a pure X rotation? if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) { // return the simplest form (human friendlier in editor and scripts) euler.x = atan2(-m12, elements[1][1]); euler.y = 0; euler.z = 0; } else { euler.x = asin(-m12); euler.y = atan2(elements[0][2], elements[2][2]); euler.z = atan2(elements[1][0], elements[1][1]); } } else { // m12 == -1 euler.x = Math_PI * 0.5; euler.y = -atan2(-elements[0][1], elements[0][0]); euler.z = 0; } } else { // m12 == 1 euler.x = -Math_PI * 0.5; euler.y = -atan2(-elements[0][1], elements[0][0]); euler.z = 0; } return euler; } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // The current implementation uses YXZ convention (Z is the first rotation). void Basis::set_euler_yxz(const Vector3 &p_euler) { real_t c, s; c = ::cos(p_euler.x); s = ::sin(p_euler.x); Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); c = ::cos(p_euler.y); s = ::sin(p_euler.y); Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); c = ::cos(p_euler.z); s = ::sin(p_euler.z); Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); //optimizer will optimize away all this anyway *this = ymat * xmat * zmat; } // transposed dot products real_t Basis::tdotx(const Vector3& v) const { return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2]; } real_t Basis::tdoty(const Vector3& v) const { return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2]; } real_t Basis::tdotz(const Vector3& v) const { return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; } bool Basis::operator==(const Basis& p_matrix) const { for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if (elements[i][j] != p_matrix.elements[i][j]) return false; } } return true; } bool Basis::operator!=(const Basis& p_matrix) const { return (!(*this==p_matrix)); } Vector3 Basis::xform(const Vector3& p_vector) const { return Vector3( elements[0].dot(p_vector), elements[1].dot(p_vector), elements[2].dot(p_vector) ); } Vector3 Basis::xform_inv(const Vector3& p_vector) const { return Vector3( (elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ), (elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ), (elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z ) ); } void Basis::operator*=(const Basis& p_matrix) { set( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); } Basis Basis::operator*(const Basis& p_matrix) const { return Basis( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) ); } void Basis::operator+=(const Basis& p_matrix) { elements[0] += p_matrix.elements[0]; elements[1] += p_matrix.elements[1]; elements[2] += p_matrix.elements[2]; } Basis Basis::operator+(const Basis& p_matrix) const { Basis ret(*this); ret += p_matrix; return ret; } void Basis::operator-=(const Basis& p_matrix) { elements[0] -= p_matrix.elements[0]; elements[1] -= p_matrix.elements[1]; elements[2] -= p_matrix.elements[2]; } Basis Basis::operator-(const Basis& p_matrix) const { Basis ret(*this); ret -= p_matrix; return ret; } void Basis::operator*=(real_t p_val) { elements[0]*=p_val; elements[1]*=p_val; elements[2]*=p_val; } Basis Basis::operator*(real_t p_val) const { Basis ret(*this); ret *= p_val; return ret; } Basis::operator String() const { String s; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { if (i != 0 || j != 0) s += ", "; s += String::num(elements[i][j]); } } return s; } /* create / set */ void Basis::set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { elements[0][0]=xx; elements[0][1]=xy; elements[0][2]=xz; elements[1][0]=yx; elements[1][1]=yy; elements[1][2]=yz; elements[2][0]=zx; elements[2][1]=zy; elements[2][2]=zz; } Vector3 Basis::get_column(int i) const { return Vector3(elements[0][i],elements[1][i],elements[2][i]); } Vector3 Basis::get_row(int i) const { return Vector3(elements[i][0],elements[i][1],elements[i][2]); } Vector3 Basis::get_main_diagonal() const { return Vector3(elements[0][0],elements[1][1],elements[2][2]); } void Basis::set_row(int i, const Vector3& p_row) { elements[i][0]=p_row.x; elements[i][1]=p_row.y; elements[i][2]=p_row.z; } Basis Basis::transpose_xform(const Basis& m) const { return Basis( elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x, elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y, elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z, elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x, elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y, elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z, elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x, elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y, elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z); } void Basis::orthonormalize() { ERR_FAIL_COND(determinant() == 0); // Gram-Schmidt Process Vector3 x=get_axis(0); Vector3 y=get_axis(1); Vector3 z=get_axis(2); x.normalize(); y = (y-x*(x.dot(y))); y.normalize(); z = (z-x*(x.dot(z))-y*(y.dot(z))); z.normalize(); set_axis(0,x); set_axis(1,y); set_axis(2,z); } Basis Basis::orthonormalized() const { Basis b = *this; b.orthonormalize(); return b; } bool Basis::is_symmetric() const { if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON) return false; if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON) return false; if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON) return false; return true; } Basis Basis::diagonalize() { // I love copy paste if (!is_symmetric()) return Basis(); const int ite_max = 1024; real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; int ite = 0; Basis acc_rot; while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) { real_t el01_2 = elements[0][1] * elements[0][1]; real_t el02_2 = elements[0][2] * elements[0][2]; real_t el12_2 = elements[1][2] * elements[1][2]; // Find the pivot element int i, j; if (el01_2 > el02_2) { if (el12_2 > el01_2) { i = 1; j = 2; } else { i = 0; j = 1; } } else { if (el12_2 > el02_2) { i = 1; j = 2; } else { i = 0; j = 2; } } // Compute the rotation angle real_t angle; if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) { angle = Math_PI / 4; } else { angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); } // Compute the rotation matrix Basis rot; rot.elements[i][i] = rot.elements[j][j] = ::cos(angle); rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle)); // Update the off matrix norm off_matrix_norm_2 -= elements[i][j] * elements[i][j]; // Apply the rotation *this = rot * *this * rot.transposed(); acc_rot = rot * acc_rot; } return acc_rot; } static const Basis _ortho_bases[24]={ Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) }; int Basis::get_orthogonal_index() const { //could be sped up if i come up with a way Basis orth=*this; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { real_t v = orth[i][j]; if (v>0.5) v=1.0; else if (v<-0.5) v=-1.0; else v=0; orth[i][j]=v; } } for(int i=0;i<24;i++) { if (_ortho_bases[i]==orth) return i; } return 0; } void Basis::set_orthogonal_index(int p_index){ //there only exist 24 orthogonal bases in r3 ERR_FAIL_COND(p_index >= 24); *this=_ortho_bases[p_index]; } Basis::Basis(const Vector3& p_euler) { set_euler( p_euler ); } } #include "Quat.hpp" namespace godot { Basis::Basis(const Quat& p_quat) { real_t d = p_quat.length_squared(); real_t s = 2.0 / d; real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; set( 1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)) ; } Basis::Basis(const Vector3& p_axis, real_t p_phi) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z); real_t cosine= ::cos(p_phi); real_t sine= ::sin(p_phi); elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x ); elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y ); elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z ); } Basis::operator Quat() const { //commenting this check because precision issues cause it to fail when it shouldn't //ERR_FAIL_COND_V(is_rotation() == false, Quat()); real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; if (trace > 0.0) { real_t s = ::sqrt(trace + 1.0); temp[3]=(s * 0.5); s = 0.5 / s; temp[0]=((elements[2][1] - elements[1][2]) * s); temp[1]=((elements[0][2] - elements[2][0]) * s); temp[2]=((elements[1][0] - elements[0][1]) * s); } else { int i = elements[0][0] < elements[1][1] ? (elements[1][1] < elements[2][2] ? 2 : 1) : (elements[0][0] < elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; real_t s = ::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; temp[3] = (elements[k][j] - elements[j][k]) * s; temp[j] = (elements[j][i] + elements[i][j]) * s; temp[k] = (elements[k][i] + elements[i][k]) * s; } return Quat(temp[0],temp[1],temp[2],temp[3]); } }