#ifndef BASIS_H #define BASIS_H #include #include "Defs.hpp" #include "Vector3.hpp" namespace godot { class Quat; class Basis { private: // This helper template is for mimicking the behavior difference between the engine // and script interfaces that logically script sees matrices as column major, while // the engine stores them in row major to efficiently take advantage of SIMD // instructions in case of matrix-vector multiplications. // With this helper template native scripts see the data as if it was column major // without actually transposing the basis matrix at the script-engine boundary. template class ColumnVector3 { private: template class ColumnVectorComponent { private: Vector3 elements[3]; protected: inline ColumnVectorComponent &operator=(const ColumnVectorComponent &p_value) { return *this = real_t(p_value); } inline ColumnVectorComponent(const ColumnVectorComponent &p_value) { *this = real_t(p_value); } inline ColumnVectorComponent &operator=(const real_t &p_value) { elements[component][column1] = p_value; return *this; } inline operator real_t() const { return elements[component][column1]; } }; public: enum Axis { AXIS_X, AXIS_Y, AXIS_Z, }; union { ColumnVectorComponent x; ColumnVectorComponent y; ColumnVectorComponent z; Vector3 elements[3]; // Not for direct access, use [] operator instead }; inline ColumnVector3 &operator=(const ColumnVector3 &p_value) { return *this = Vector3(p_value); } inline ColumnVector3(const ColumnVector3 &p_value) { *this = Vector3(p_value); } inline ColumnVector3 &operator=(const Vector3 &p_value) { elements[0][column] = p_value.x; elements[1][column] = p_value.y; elements[2][column] = p_value.z; return *this; } inline operator Vector3() const { return Vector3(elements[0][column], elements[1][column], elements[2][column]); } // Unfortunately, we also need to replicate the other interfaces of Vector3 in // order for being able to directly operate on these "meta-Vector3" objects without // an explicit cast or an intermediate assignment to a real Vector3 object. inline const real_t &operator[](int p_axis) const { return elements[p_axis][column]; } inline real_t &operator[](int p_axis) { return elements[p_axis][column]; } inline ColumnVector3 &operator+=(const Vector3 &p_v) { return *this = *this + p_v; } inline Vector3 operator+(const Vector3 &p_v) const { return Vector3(*this) + p_v; } inline ColumnVector3 &operator-=(const Vector3 &p_v) { return *this = *this - p_v; } inline Vector3 operator-(const Vector3 &p_v) const { return Vector3(*this) - p_v; } inline ColumnVector3 &operator*=(const Vector3 &p_v) { return *this = *this * p_v; } inline Vector3 operator*(const Vector3 &p_v) const { return Vector3(*this) * p_v; } inline ColumnVector3 &operator/=(const Vector3 &p_v) { return *this = *this / p_v; } inline Vector3 operator/(const Vector3 &p_v) const { return Vector3(*this) / p_v; } inline ColumnVector3 &operator*=(real_t p_scalar) { return *this = *this * p_scalar; } inline Vector3 operator*(real_t p_scalar) const { return Vector3(*this) * p_scalar; } inline ColumnVector3 &operator/=(real_t p_scalar) { return *this = *this / p_scalar; } inline Vector3 operator/(real_t p_scalar) const { return Vector3(*this) / p_scalar; } inline Vector3 operator-() const { return -Vector3(*this); } inline bool operator==(const Vector3 &p_v) const { return Vector3(*this) == p_v; } inline bool operator!=(const Vector3 &p_v) const { return Vector3(*this) != p_v; } inline bool operator<(const Vector3 &p_v) const { return Vector3(*this) < p_v; } inline bool operator<=(const Vector3 &p_v) const { return Vector3(*this) <= p_v; } inline Vector3 abs() const { return Vector3(*this).abs(); } inline Vector3 ceil() const { return Vector3(*this).ceil(); } inline Vector3 cross(const Vector3 &b) const { return Vector3(*this).cross(b); } inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const { return Vector3(*this).linear_interpolate(p_b, p_t); } inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const { return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t); } inline Vector3 bounce(const Vector3 &p_normal) const { return Vector3(*this).bounce(p_normal); } inline real_t length() const { return Vector3(*this).length(); } inline real_t length_squared() const { return Vector3(*this).length_squared(); } inline real_t distance_squared_to(const Vector3 &b) const { return Vector3(*this).distance_squared_to(b); } inline real_t distance_to(const Vector3 &b) const { return Vector3(*this).distance_to(b); } inline real_t dot(const Vector3 &b) const { return Vector3(*this).dot(b); } inline real_t angle_to(const Vector3 &b) const { return Vector3(*this).angle_to(b); } inline Vector3 floor() const { return Vector3(*this).floor(); } inline Vector3 inverse() const { return Vector3(*this).inverse(); } inline bool is_normalized() const { return Vector3(*this).is_normalized(); } inline Basis outer(const Vector3 &b) const { return Vector3(*this).outer(b); } inline int max_axis() const { return Vector3(*this).max_axis(); } inline int min_axis() const { return Vector3(*this).min_axis(); } inline void normalize() { Vector3 v = *this; v.normalize(); *this = v; } inline Vector3 normalized() const { return Vector3(*this).normalized(); } inline Vector3 reflect(const Vector3 &by) const { return Vector3(*this).reflect(by); } inline Vector3 rotated(const Vector3 &axis, const real_t phi) const { return Vector3(*this).rotated(axis, phi); } inline void rotate(const Vector3 &p_axis, real_t p_phi) { Vector3 v = *this; v.rotate(p_axis, p_phi); *this = v; } inline Vector3 slide(const Vector3 &by) const { return Vector3(*this).slide(by); } inline void snap(real_t p_val) { Vector3 v = *this; v.snap(p_val); *this = v; } inline Vector3 snapped(const float by) { return Vector3(*this).snapped(by); } inline operator String() const { return String(Vector3(*this)); } }; public: union { ColumnVector3<0> x; ColumnVector3<1> y; ColumnVector3<2> z; Vector3 elements[3]; // Not for direct access, use [] operator instead }; inline Basis(const Basis &p_basis) { elements[0] = p_basis.elements[0]; elements[1] = p_basis.elements[1]; elements[2] = p_basis.elements[2]; } inline Basis &operator=(const Basis &p_basis) { elements[0] = p_basis.elements[0]; elements[1] = p_basis.elements[1]; elements[2] = p_basis.elements[2]; return *this; } Basis(const Quat &p_quat); // euler Basis(const Vector3 &p_euler); // euler Basis(const Vector3 &p_axis, real_t p_phi); Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2); Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz); Basis(); const Vector3 &operator[](int axis) const { return get_axis(axis); } ColumnVector3<0> &operator[](int axis) { // We need to do a little pointer magic to get this to work, because the // ColumnVector3 template takes the axis as a template parameter. // Don't touch this unless you're sure what you're doing! return (reinterpret_cast(reinterpret_cast(this) + axis))->x; } void invert(); bool isequal_approx(const Basis &a, const Basis &b) const; bool is_orthogonal() const; bool is_rotation() const; void transpose(); Basis inverse() const; Basis transposed() const; real_t determinant() const; Vector3 get_axis(int p_axis) const; void set_axis(int p_axis, const Vector3 &p_value); void rotate(const Vector3 &p_axis, real_t p_phi); Basis rotated(const Vector3 &p_axis, real_t p_phi) const; void scale(const Vector3 &p_scale); Basis scaled(const Vector3 &p_scale) const; Vector3 get_scale() const; Vector3 get_euler_xyz() const; void set_euler_xyz(const Vector3 &p_euler); Vector3 get_euler_yxz() const; void set_euler_yxz(const Vector3 &p_euler); inline Vector3 get_euler() const { return get_euler_yxz(); } inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); } // transposed dot products real_t tdotx(const Vector3 &v) const; real_t tdoty(const Vector3 &v) const; real_t tdotz(const Vector3 &v) const; bool operator==(const Basis &p_matrix) const; bool operator!=(const Basis &p_matrix) const; Vector3 xform(const Vector3 &p_vector) const; Vector3 xform_inv(const Vector3 &p_vector) const; void operator*=(const Basis &p_matrix); Basis operator*(const Basis &p_matrix) const; void operator+=(const Basis &p_matrix); Basis operator+(const Basis &p_matrix) const; void operator-=(const Basis &p_matrix); Basis operator-(const Basis &p_matrix) const; void operator*=(real_t p_val); Basis operator*(real_t p_val) const; int get_orthogonal_index() const; // down below void set_orthogonal_index(int p_index); // down below operator String() const; void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const; /* create / set */ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz); Vector3 get_column(int i) const; Vector3 get_row(int i) const; Vector3 get_main_diagonal() const; void set_row(int i, const Vector3 &p_row); Basis transpose_xform(const Basis &m) const; void orthonormalize(); Basis orthonormalized() const; bool is_symmetric() const; Basis diagonalize(); operator Quat() const; }; } // namespace godot #endif // BASIS_H