/**************************************************************************/ /* binder_common.hpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef GODOT_BINDER_COMMON_HPP #define GODOT_BINDER_COMMON_HPP #include #include #include #include #include namespace godot { #define VARIANT_ENUM_CAST(m_enum) \ namespace godot { \ MAKE_ENUM_TYPE_INFO(m_enum) \ template <> \ struct VariantCaster { \ static _FORCE_INLINE_ m_enum cast(const Variant &p_variant) { \ return (m_enum)p_variant.operator int64_t(); \ } \ }; \ template <> \ struct PtrToArg { \ _FORCE_INLINE_ static m_enum convert(const void *p_ptr) { \ return m_enum(*reinterpret_cast(p_ptr)); \ } \ typedef int64_t EncodeT; \ _FORCE_INLINE_ static void encode(m_enum p_val, void *p_ptr) { \ *reinterpret_cast(p_ptr) = p_val; \ } \ }; \ } #define VARIANT_BITFIELD_CAST(m_enum) \ namespace godot { \ MAKE_BITFIELD_TYPE_INFO(m_enum) \ template <> \ struct VariantCaster> { \ static _FORCE_INLINE_ BitField cast(const Variant &p_variant) { \ return BitField(p_variant.operator int64_t()); \ } \ }; \ template <> \ struct PtrToArg> { \ _FORCE_INLINE_ static BitField convert(const void *p_ptr) { \ return BitField(*reinterpret_cast(p_ptr)); \ } \ typedef int64_t EncodeT; \ _FORCE_INLINE_ static void encode(BitField p_val, void *p_ptr) { \ *reinterpret_cast(p_ptr) = p_val; \ } \ }; \ } template struct VariantCaster { static _FORCE_INLINE_ T cast(const Variant &p_variant) { using TStripped = std::remove_pointer_t; if constexpr (std::is_base_of::value) { return Object::cast_to(p_variant); } else { return p_variant; } } }; template struct VariantCaster { static _FORCE_INLINE_ T cast(const Variant &p_variant) { using TStripped = std::remove_pointer_t; if constexpr (std::is_base_of::value) { return Object::cast_to(p_variant); } else { return p_variant; } } }; template struct VariantCaster { static _FORCE_INLINE_ T cast(const Variant &p_variant) { using TStripped = std::remove_pointer_t; if constexpr (std::is_base_of::value) { return Object::cast_to(p_variant); } else { return p_variant; } } }; template struct VariantObjectClassChecker { static _FORCE_INLINE_ bool check(const Variant &p_variant) { using TStripped = std::remove_pointer_t; if constexpr (std::is_base_of::value) { Object *obj = p_variant; return Object::cast_to(p_variant) || !obj; } else { return true; } } }; template class Ref; template struct VariantObjectClassChecker &> { static _FORCE_INLINE_ bool check(const Variant &p_variant) { Object *obj = p_variant; const Ref node = p_variant; return node.ptr() || !obj; } }; template struct VariantCasterAndValidate { static _FORCE_INLINE_ T cast(const Variant **p_args, uint32_t p_arg_idx, GDExtensionCallError &r_error) { GDExtensionVariantType argtype = GDExtensionVariantType(GetTypeInfo::VARIANT_TYPE); if (!internal::gdextension_interface_variant_can_convert_strict(static_cast(p_args[p_arg_idx]->get_type()), argtype) || !VariantObjectClassChecker::check(p_args[p_arg_idx])) { r_error.error = GDEXTENSION_CALL_ERROR_INVALID_ARGUMENT; r_error.argument = p_arg_idx; r_error.expected = argtype; } return VariantCaster::cast(*p_args[p_arg_idx]); } }; template struct VariantCasterAndValidate { static _FORCE_INLINE_ T cast(const Variant **p_args, uint32_t p_arg_idx, GDExtensionCallError &r_error) { GDExtensionVariantType argtype = GDExtensionVariantType(GetTypeInfo::VARIANT_TYPE); if (!internal::gdextension_interface_variant_can_convert_strict(static_cast(p_args[p_arg_idx]->get_type()), argtype) || !VariantObjectClassChecker::check(p_args[p_arg_idx])) { r_error.error = GDEXTENSION_CALL_ERROR_INVALID_ARGUMENT; r_error.argument = p_arg_idx; r_error.expected = argtype; } return VariantCaster::cast(*p_args[p_arg_idx]); } }; template struct VariantCasterAndValidate { static _FORCE_INLINE_ T cast(const Variant **p_args, uint32_t p_arg_idx, GDExtensionCallError &r_error) { GDExtensionVariantType argtype = GDExtensionVariantType(GetTypeInfo::VARIANT_TYPE); if (!internal::gdextension_interface_variant_can_convert_strict(static_cast(p_args[p_arg_idx]->get_type()), argtype) || !VariantObjectClassChecker::check(p_args[p_arg_idx])) { r_error.error = GDEXTENSION_CALL_ERROR_INVALID_ARGUMENT; r_error.argument = p_arg_idx; r_error.expected = argtype; } return VariantCaster::cast(*p_args[p_arg_idx]); } }; template void call_with_ptr_args_helper(T *p_instance, void (T::*p_method)(P...), const GDExtensionConstTypePtr *p_args, IndexSequence) { (p_instance->*p_method)(PtrToArg

::convert(p_args[Is])...); } template void call_with_ptr_argsc_helper(T *p_instance, void (T::*p_method)(P...) const, const GDExtensionConstTypePtr *p_args, IndexSequence) { (p_instance->*p_method)(PtrToArg

::convert(p_args[Is])...); } template void call_with_ptr_args_ret_helper(T *p_instance, R (T::*p_method)(P...), const GDExtensionConstTypePtr *p_args, void *r_ret, IndexSequence) { PtrToArg::encode((p_instance->*p_method)(PtrToArg

::convert(p_args[Is])...), r_ret); } template void call_with_ptr_args_retc_helper(T *p_instance, R (T::*p_method)(P...) const, const GDExtensionConstTypePtr *p_args, void *r_ret, IndexSequence) { PtrToArg::encode((p_instance->*p_method)(PtrToArg

::convert(p_args[Is])...), r_ret); } template void call_with_ptr_args(T *p_instance, void (T::*p_method)(P...), const GDExtensionConstTypePtr *p_args, void * /*ret*/) { call_with_ptr_args_helper(p_instance, p_method, p_args, BuildIndexSequence{}); } template void call_with_ptr_args(T *p_instance, void (T::*p_method)(P...) const, const GDExtensionConstTypePtr *p_args, void * /*ret*/) { call_with_ptr_argsc_helper(p_instance, p_method, p_args, BuildIndexSequence{}); } template void call_with_ptr_args(T *p_instance, R (T::*p_method)(P...), const GDExtensionConstTypePtr *p_args, void *r_ret) { call_with_ptr_args_ret_helper(p_instance, p_method, p_args, r_ret, BuildIndexSequence{}); } template void call_with_ptr_args(T *p_instance, R (T::*p_method)(P...) const, const GDExtensionConstTypePtr *p_args, void *r_ret) { call_with_ptr_args_retc_helper(p_instance, p_method, p_args, r_ret, BuildIndexSequence{}); } // GCC raises "parameter 'p_args' set but not used" when P = {}, // it's not clever enough to treat other P values as making this branch valid. #if defined(DEBUG_METHODS_ENABLED) && defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-but-set-parameter" #endif template void call_with_variant_args_helper(T *p_instance, void (T::*p_method)(P...), const Variant **p_args, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED (p_instance->*p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else (p_instance->*p_method)(VariantCaster

::cast(*p_args[Is])...); #endif (void)(p_args); // Avoid warning. } template void call_with_variant_argsc_helper(T *p_instance, void (T::*p_method)(P...) const, const Variant **p_args, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED (p_instance->*p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else (p_instance->*p_method)(VariantCaster

::cast(*p_args[Is])...); #endif (void)(p_args); // Avoid warning. } template void call_with_variant_args_ret_helper(T *p_instance, R (T::*p_method)(P...), const Variant **p_args, Variant &r_ret, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED r_ret = (p_instance->*p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else r_ret = (p_instance->*p_method)(VariantCaster

::cast(*p_args[Is])...); #endif } template void call_with_variant_args_retc_helper(T *p_instance, R (T::*p_method)(P...) const, const Variant **p_args, Variant &r_ret, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED r_ret = (p_instance->*p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else r_ret = (p_instance->*p_method)(VariantCaster

::cast(*p_args[Is])...); #endif (void)p_args; } template void call_with_variant_args(T *p_instance, void (T::*p_method)(P...), const Variant **p_args, int p_argcount, GDExtensionCallError &r_error) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } if ((size_t)p_argcount < sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif call_with_variant_args_helper(p_instance, p_method, p_args, r_error, BuildIndexSequence{}); } template void call_with_variant_args_ret(T *p_instance, R (T::*p_method)(P...), const Variant **p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } if ((size_t)p_argcount < sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif call_with_variant_args_ret_helper(p_instance, p_method, p_args, r_ret, r_error, BuildIndexSequence{}); } template void call_with_variant_args_retc(T *p_instance, R (T::*p_method)(P...) const, const Variant **p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } if ((size_t)p_argcount < sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif call_with_variant_args_retc_helper(p_instance, p_method, p_args, r_ret, r_error, BuildIndexSequence{}); } template void call_with_variant_args_dv(T *p_instance, void (T::*p_method)(P...), const GDExtensionConstVariantPtr *p_args, int p_argcount, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = (int32_t)default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_args_helper(p_instance, p_method, argsp.data(), r_error, BuildIndexSequence{}); } template void call_with_variant_argsc_dv(T *p_instance, void (T::*p_method)(P...) const, const GDExtensionConstVariantPtr *p_args, int p_argcount, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = (int32_t)default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_argsc_helper(p_instance, p_method, argsp.data(), r_error, BuildIndexSequence{}); } template void call_with_variant_args_ret_dv(T *p_instance, R (T::*p_method)(P...), const GDExtensionConstVariantPtr *p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = (int32_t)default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_args_ret_helper(p_instance, p_method, argsp.data(), r_ret, r_error, BuildIndexSequence{}); } template void call_with_variant_args_retc_dv(T *p_instance, R (T::*p_method)(P...) const, const GDExtensionConstVariantPtr *p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = (int32_t)default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_args_retc_helper(p_instance, p_method, argsp.data(), r_ret, r_error, BuildIndexSequence{}); } template void call_get_argument_type_helper(int p_arg, int &index, GDExtensionVariantType &type) { if (p_arg == index) { type = GDExtensionVariantType(GetTypeInfo::VARIANT_TYPE); } index++; } template GDExtensionVariantType call_get_argument_type(int p_arg) { GDExtensionVariantType type = GDEXTENSION_VARIANT_TYPE_NIL; int index = 0; // I think rocket science is simpler than modern C++. using expand_type = int[]; expand_type a{ 0, (call_get_argument_type_helper

(p_arg, index, type), 0)... }; (void)a; // Suppress (valid, but unavoidable) -Wunused-variable warning. (void)index; // Suppress GCC warning. return type; } template void call_get_argument_type_info_helper(int p_arg, int &index, PropertyInfo &info) { if (p_arg == index) { info = GetTypeInfo::get_class_info(); } index++; } template void call_get_argument_type_info(int p_arg, PropertyInfo &info) { int index = 0; // I think rocket science is simpler than modern C++. using expand_type = int[]; expand_type a{ 0, (call_get_argument_type_info_helper

(p_arg, index, info), 0)... }; (void)a; // Suppress (valid, but unavoidable) -Wunused-variable warning. (void)index; // Suppress GCC warning. } template void call_get_argument_metadata_helper(int p_arg, int &index, GDExtensionClassMethodArgumentMetadata &md) { if (p_arg == index) { md = GetTypeInfo::METADATA; } index++; } template GDExtensionClassMethodArgumentMetadata call_get_argument_metadata(int p_arg) { GDExtensionClassMethodArgumentMetadata md = GDEXTENSION_METHOD_ARGUMENT_METADATA_NONE; int index = 0; // I think rocket science is simpler than modern C++. using expand_type = int[]; expand_type a{ 0, (call_get_argument_metadata_helper

(p_arg, index, md), 0)... }; (void)a; // Suppress (valid, but unavoidable) -Wunused-variable warning. (void)index; return md; } template void call_with_variant_args_static(void (*p_method)(P...), const Variant **p_args, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED (p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else (p_method)(VariantCaster

::cast(*p_args[Is])...); #endif } template void call_with_variant_args_static_dv(void (*p_method)(P...), const GDExtensionConstVariantPtr *p_args, int p_argcount, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_args_static(p_method, argsp.data(), r_error, BuildIndexSequence{}); } template void call_with_ptr_args_static_method_helper(void (*p_method)(P...), const GDExtensionConstTypePtr *p_args, IndexSequence) { p_method(PtrToArg

::convert(p_args[Is])...); } template void call_with_ptr_args_static_method(void (*p_method)(P...), const GDExtensionConstTypePtr *p_args) { call_with_ptr_args_static_method_helper(p_method, p_args, BuildIndexSequence{}); } template void call_with_variant_args_static_ret(R (*p_method)(P...), const Variant **p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } if ((size_t)p_argcount < sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif call_with_variant_args_static_ret(p_method, p_args, r_ret, r_error, BuildIndexSequence{}); } template void call_with_variant_args_static_ret(void (*p_method)(P...), const Variant **p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } if ((size_t)p_argcount < sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = (int32_t)sizeof...(P); return; } #endif call_with_variant_args_static(p_method, p_args, r_error, BuildIndexSequence{}); } template void call_with_variant_args_static_ret(R (*p_method)(P...), const Variant **p_args, Variant &r_ret, GDExtensionCallError &r_error, IndexSequence) { r_error.error = GDEXTENSION_CALL_OK; #ifdef DEBUG_METHODS_ENABLED r_ret = (p_method)(VariantCasterAndValidate

::cast(p_args, Is, r_error)...); #else r_ret = (p_method)(VariantCaster

::cast(*p_args[Is])...); #endif } template void call_with_variant_args_static_ret_dv(R (*p_method)(P...), const GDExtensionConstVariantPtr *p_args, int p_argcount, Variant &r_ret, GDExtensionCallError &r_error, const std::vector &default_values) { #ifdef DEBUG_ENABLED if ((size_t)p_argcount > sizeof...(P)) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = sizeof...(P); return; } #endif int32_t missing = (int32_t)sizeof...(P) - (int32_t)p_argcount; int32_t dvs = default_values.size(); #ifdef DEBUG_ENABLED if (missing > dvs) { r_error.error = GDEXTENSION_CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = sizeof...(P); return; } #endif Variant args[sizeof...(P) == 0 ? 1 : sizeof...(P)]; // Avoid zero sized array. std::array argsp; for (int32_t i = 0; i < (int32_t)sizeof...(P); i++) { if (i < p_argcount) { args[i] = Variant(p_args[i]); } else { args[i] = default_values[i - p_argcount + (dvs - missing)]; } argsp[i] = &args[i]; } call_with_variant_args_static_ret(p_method, argsp.data(), r_ret, r_error, BuildIndexSequence{}); } template void call_with_ptr_args_static_method_ret_helper(R (*p_method)(P...), const GDExtensionConstTypePtr *p_args, void *r_ret, IndexSequence) { PtrToArg::encode(p_method(PtrToArg

::convert(p_args[Is])...), r_ret); } template void call_with_ptr_args_static_method_ret(R (*p_method)(P...), const GDExtensionConstTypePtr *p_args, void *r_ret) { call_with_ptr_args_static_method_ret_helper(p_method, p_args, r_ret, BuildIndexSequence{}); } #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif } // namespace godot #include #include #endif // GODOT_BINDER_COMMON_HPP