#ifndef TRANSFORM2D_H #define TRANSFORM2D_H #include "Vector2.h" // @Todo // error handling plllls #ifndef ERR_FAIL_INDEX_V #define ERR_FAIL_INDEX_V(a, b, c) #endif #ifndef ERR_FAIL_INDEX #define ERR_FAIL_INDEX(a, b) #endif #ifndef ERR_FAIL_COND #define ERR_FAIL_COND(a) #endif namespace godot { typedef Vector2 Size2; class Rect2; struct Transform2D { // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": // M = (elements[0][0] elements[1][0]) // (elements[0][1] elements[1][1]) // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, // and angle is measure from +X to +Y in a clockwise-fashion. Vector2 elements[3]; real_t tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } real_t tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } const Vector2& operator[](int p_idx) const { return elements[p_idx]; } Vector2& operator[](int p_idx) { return elements[p_idx]; } Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; } void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; } void invert(); Transform2D inverse() const; void affine_invert(); Transform2D affine_inverse() const; void set_rotation(real_t p_phi); real_t get_rotation() const; void set_rotation_and_scale(real_t p_phi,const Size2& p_scale); void rotate(real_t p_phi); void scale(const Size2& p_scale); void scale_basis(const Size2& p_scale); void translate( real_t p_tx, real_t p_ty); void translate( const Vector2& p_translation ); real_t basis_determinant() const; Size2 get_scale() const; const Vector2& get_origin() const { return elements[2]; } void set_origin(const Vector2& p_origin) { elements[2]=p_origin; } Transform2D scaled(const Size2& p_scale) const; Transform2D basis_scaled(const Size2& p_scale) const; Transform2D translated(const Vector2& p_offset) const; Transform2D rotated(real_t p_phi) const; Transform2D untranslated() const; void orthonormalize(); Transform2D orthonormalized() const; bool operator==(const Transform2D& p_transform) const; bool operator!=(const Transform2D& p_transform) const; void operator*=(const Transform2D& p_transform); Transform2D operator*(const Transform2D& p_transform) const; Transform2D interpolate_with(const Transform2D& p_transform, real_t p_c) const; Vector2 basis_xform(const Vector2& p_vec) const; Vector2 basis_xform_inv(const Vector2& p_vec) const; Vector2 xform(const Vector2& p_vec) const; Vector2 xform_inv(const Vector2& p_vec) const; Rect2 xform(const Rect2& p_vec) const; Rect2 xform_inv(const Rect2& p_vec) const; operator String() const; Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) { elements[0][0] = xx; elements[0][1] = xy; elements[1][0] = yx; elements[1][1] = yy; elements[2][0] = ox; elements[2][1] = oy; } Transform2D(real_t p_rot, const Vector2& p_pos); Transform2D() { elements[0][0]=1.0; elements[1][1]=1.0; } }; } #include "Rect2.h" namespace godot { Vector2 Transform2D::basis_xform(const Vector2& v) const { return Vector2( tdotx(v), tdoty(v) ); } Vector2 Transform2D::basis_xform_inv(const Vector2& v) const{ return Vector2( elements[0].dot(v), elements[1].dot(v) ); } Vector2 Transform2D::xform(const Vector2& v) const { return Vector2( tdotx(v), tdoty(v) ) + elements[2]; } Vector2 Transform2D::xform_inv(const Vector2& p_vec) const { Vector2 v = p_vec - elements[2]; return Vector2( elements[0].dot(v), elements[1].dot(v) ); } Rect2 Transform2D::xform(const Rect2& p_rect) const { Vector2 x=elements[0]*p_rect.size.x; Vector2 y=elements[1]*p_rect.size.y; Vector2 pos = xform( p_rect.pos ); Rect2 new_rect; new_rect.pos=pos; new_rect.expand_to( pos+x ); new_rect.expand_to( pos+y ); new_rect.expand_to( pos+x+y ); return new_rect; } void Transform2D::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) { elements[0][0]=::cos(p_rot)*p_scale.x; elements[1][1]=::cos(p_rot)*p_scale.y; elements[1][0]=-::sin(p_rot)*p_scale.y; elements[0][1]=::sin(p_rot)*p_scale.x; } Rect2 Transform2D::xform_inv(const Rect2& p_rect) const { Vector2 ends[4]={ xform_inv( p_rect.pos ), xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ), xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ), xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) ) }; Rect2 new_rect; new_rect.pos=ends[0]; new_rect.expand_to(ends[1]); new_rect.expand_to(ends[2]); new_rect.expand_to(ends[3]); return new_rect; } void Transform2D::invert() { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. std::swap(elements[0][1],elements[1][0]); elements[2] = basis_xform(-elements[2]); } Transform2D Transform2D::inverse() const { Transform2D inv=*this; inv.invert(); return inv; } void Transform2D::affine_invert() { real_t det = basis_determinant(); ERR_FAIL_COND(det==0); real_t idet = 1.0 / det; std::swap( elements[0][0],elements[1][1] ); elements[0]*=Vector2(idet,-idet); elements[1]*=Vector2(-idet,idet); elements[2] = basis_xform(-elements[2]); } Transform2D Transform2D::affine_inverse() const { Transform2D inv=*this; inv.affine_invert(); return inv; } void Transform2D::rotate(real_t p_phi) { *this = Transform2D(p_phi,Vector2()) * (*this); } real_t Transform2D::get_rotation() const { real_t det = basis_determinant(); Transform2D m = orthonormalized(); if (det < 0) { m.scale_basis(Size2(-1,-1)); } return ::atan2(m[0].y,m[0].x); } void Transform2D::set_rotation(real_t p_rot) { real_t cr = ::cos(p_rot); real_t sr = ::sin(p_rot); elements[0][0]=cr; elements[0][1]=sr; elements[1][0]=-sr; elements[1][1]=cr; } Transform2D::Transform2D(real_t p_rot, const Vector2& p_pos) { real_t cr = ::cos(p_rot); real_t sr = ::sin(p_rot); elements[0][0]=cr; elements[0][1]=sr; elements[1][0]=-sr; elements[1][1]=cr; elements[2]=p_pos; } Size2 Transform2D::get_scale() const { real_t det_sign = basis_determinant() > 0 ? 1 : -1; return det_sign * Size2( elements[0].length(), elements[1].length() ); } void Transform2D::scale(const Size2& p_scale) { scale_basis(p_scale); elements[2]*=p_scale; } void Transform2D::scale_basis(const Size2& p_scale) { elements[0][0]*=p_scale.x; elements[0][1]*=p_scale.y; elements[1][0]*=p_scale.x; elements[1][1]*=p_scale.y; } void Transform2D::translate( real_t p_tx, real_t p_ty) { translate(Vector2(p_tx,p_ty)); } void Transform2D::translate( const Vector2& p_translation ) { elements[2]+=basis_xform(p_translation); } void Transform2D::orthonormalize() { // Gram-Schmidt Process Vector2 x=elements[0]; Vector2 y=elements[1]; x.normalize(); y = (y-x*(x.dot(y))); y.normalize(); elements[0]=x; elements[1]=y; } Transform2D Transform2D::orthonormalized() const { Transform2D on=*this; on.orthonormalize(); return on; } bool Transform2D::operator==(const Transform2D& p_transform) const { for(int i=0;i<3;i++) { if (elements[i]!=p_transform.elements[i]) return false; } return true; } bool Transform2D::operator!=(const Transform2D& p_transform) const { for(int i=0;i<3;i++) { if (elements[i]!=p_transform.elements[i]) return true; } return false; } void Transform2D::operator*=(const Transform2D& p_transform) { elements[2] = xform(p_transform.elements[2]); real_t x0,x1,y0,y1; x0 = tdotx(p_transform.elements[0]); x1 = tdoty(p_transform.elements[0]); y0 = tdotx(p_transform.elements[1]); y1 = tdoty(p_transform.elements[1]); elements[0][0]=x0; elements[0][1]=x1; elements[1][0]=y0; elements[1][1]=y1; } Transform2D Transform2D::operator*(const Transform2D& p_transform) const { Transform2D t = *this; t*=p_transform; return t; } Transform2D Transform2D::scaled(const Size2& p_scale) const { Transform2D copy=*this; copy.scale(p_scale); return copy; } Transform2D Transform2D::basis_scaled(const Size2& p_scale) const { Transform2D copy=*this; copy.scale_basis(p_scale); return copy; } Transform2D Transform2D::untranslated() const { Transform2D copy=*this; copy.elements[2]=Vector2(); return copy; } Transform2D Transform2D::translated(const Vector2& p_offset) const { Transform2D copy=*this; copy.translate(p_offset); return copy; } Transform2D Transform2D::rotated(real_t p_phi) const { Transform2D copy=*this; copy.rotate(p_phi); return copy; } real_t Transform2D::basis_determinant() const { return elements[0].x * elements[1].y - elements[0].y * elements[1].x; } Transform2D Transform2D::interpolate_with(const Transform2D& p_transform, real_t p_c) const { //extract parameters Vector2 p1 = get_origin(); Vector2 p2 = p_transform.get_origin(); real_t r1 = get_rotation(); real_t r2 = p_transform.get_rotation(); Size2 s1 = get_scale(); Size2 s2 = p_transform.get_scale(); //slerp rotation Vector2 v1(::cos(r1), ::sin(r1)); Vector2 v2(::cos(r2), ::sin(r2)); real_t dot = v1.dot(v2); dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1] Vector2 v; if (dot > 0.9995) { v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues } else { real_t angle = p_c*::acos(dot); Vector2 v3 = (v2 - v1*dot).normalized(); v = v1*::cos(angle) + v3*::sin(angle); } //construct matrix Transform2D res(::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c)); res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c)); return res; } Transform2D::operator String() const { //return String(String()+elements[0]+", "+elements[1]+", "+elements[2]); return String(); // @Todo } } #endif // TRANSFORM2D_H