#ifndef PLANE_H #define PLANE_H #include "Vector3.h" #include typedef float real_t; // @Todo move this to a global Godot.h #define CMP_EPSILON 0.00001 namespace godot { #define _PLANE_EQ_DOT_EPSILON 0.999 #define _PLANE_EQ_D_EPSILON 0.0001 enum ClockDirection { CLOCKWISE, COUNTERCLOCKWISE }; class Plane { public: Vector3 normal; real_t d; void set_normal(const Vector3& p_normal) { this->normal = p_normal; } Vector3 get_normal() const { return normal; } ///Point is coplanar, CMP_EPSILON for precision void normalize(); // down below Plane normalized() const; // down below /* Plane-Point operations */ Vector3 center() const { return normal*d; } Vector3 get_any_point() const; Vector3 get_any_perpendicular_normal() const; bool is_point_over(const Vector3 &p_point) const; ///< Point is over plane real_t distance_to(const Vector3 &p_point) const; bool has_point(const Vector3 &p_point,real_t _epsilon=CMP_EPSILON) const; /* intersections */ bool intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result=0) const; bool intersects_ray(Vector3 p_from, Vector3 p_dir, Vector3* p_intersection) const; bool intersects_segment(Vector3 p_begin, Vector3 p_end, Vector3* p_intersection) const; Vector3 project(const Vector3& p_point) const { return p_point - normal * distance_to(p_point); } /* misc */ Plane operator-() const { return Plane(-normal,-d); } bool is_almost_like(const Plane& p_plane) const; bool operator==(const Plane& p_plane) const; bool operator!=(const Plane& p_plane) const; operator String() const; Plane() { d=0; } Plane(real_t p_a, real_t p_b, real_t p_c, real_t p_d) : normal(p_a,p_b,p_c), d(p_d) { } Plane(const Vector3 &p_normal, real_t p_d); Plane(const Vector3 &p_point, const Vector3& p_normal); Plane(const Vector3 &p_point1, const Vector3 &p_point2,const Vector3 &p_point3,ClockDirection p_dir = CLOCKWISE); }; void Plane::normalize() { real_t l = normal.length(); if (l==0) { *this=Plane(0,0,0,0); return; } normal/=l; d/=l; } Plane Plane::normalized() const { Plane p = *this; p.normalize(); return p; } Vector3 Plane::get_any_point() const { return get_normal()*d; } Vector3 Plane::get_any_perpendicular_normal() const { static const Vector3 p1 = Vector3(1,0,0); static const Vector3 p2 = Vector3(0,1,0); Vector3 p; if (::fabs(normal.dot(p1)) > 0.99) // if too similar to p1 p=p2; // use p2 else p=p1; // use p1 p-=normal * normal.dot(p); p.normalize(); return p; } /* intersections */ bool Plane::intersect_3(const Plane &p_plane1, const Plane &p_plane2, Vector3 *r_result) const { const Plane &p_plane0=*this; Vector3 normal0=p_plane0.normal; Vector3 normal1=p_plane1.normal; Vector3 normal2=p_plane2.normal; real_t denom=vec3_cross(normal0,normal1).dot(normal2); if (::fabs(denom)<=CMP_EPSILON) return false; if (r_result) { *r_result = ( (vec3_cross(normal1, normal2) * p_plane0.d) + (vec3_cross(normal2, normal0) * p_plane1.d) + (vec3_cross(normal0, normal1) * p_plane2.d) )/denom; } return true; } bool Plane::intersects_ray(Vector3 p_from, Vector3 p_dir, Vector3* p_intersection) const { Vector3 segment=p_dir; real_t den=normal.dot( segment ); //printf("den is %i\n",den); if (::fabs(den)<=CMP_EPSILON) { return false; } real_t dist=(normal.dot( p_from ) - d) / den; //printf("dist is %i\n",dist); if (dist>CMP_EPSILON) { //this is a ray, before the emiting pos (p_from) doesnt exist return false; } dist=-dist; *p_intersection = p_from + segment * dist; return true; } bool Plane::intersects_segment(Vector3 p_begin, Vector3 p_end, Vector3* p_intersection) const { Vector3 segment= p_begin - p_end; real_t den=normal.dot( segment ); //printf("den is %i\n",den); if (::fabs(den)<=CMP_EPSILON) { return false; } real_t dist=(normal.dot( p_begin ) - d) / den; //printf("dist is %i\n",dist); if (dist<-CMP_EPSILON || dist > (1.0 +CMP_EPSILON)) { return false; } dist=-dist; *p_intersection = p_begin + segment * dist; return true; } /* misc */ bool Plane::is_almost_like(const Plane& p_plane) const { return (normal.dot( p_plane.normal ) > _PLANE_EQ_DOT_EPSILON && ::fabs(d-p_plane.d) < _PLANE_EQ_D_EPSILON); } Plane::operator String() const { // return normal.operator String() + ", " + rtos(d); return String(); // @Todo } bool Plane::is_point_over(const Vector3 &p_point) const { return (normal.dot(p_point) > d); } real_t Plane::distance_to(const Vector3 &p_point) const { return (normal.dot(p_point)-d); } bool Plane::has_point(const Vector3 &p_point,real_t _epsilon) const { real_t dist=normal.dot(p_point) - d; dist=::fabs(dist); return ( dist <= _epsilon); } Plane::Plane(const Vector3 &p_normal, real_t p_d) { normal=p_normal; d=p_d; } Plane::Plane(const Vector3 &p_point, const Vector3& p_normal) { normal=p_normal; d=p_normal.dot(p_point); } Plane::Plane(const Vector3 &p_point1, const Vector3 &p_point2, const Vector3 &p_point3,ClockDirection p_dir) { if (p_dir == CLOCKWISE) normal=(p_point1-p_point3).cross(p_point1-p_point2); else normal=(p_point1-p_point2).cross(p_point1-p_point3); normal.normalize(); d = normal.dot(p_point1); } bool Plane::operator==(const Plane& p_plane) const { return normal==p_plane.normal && d == p_plane.d; } bool Plane::operator!=(const Plane& p_plane) const { return normal!=p_plane.normal || d != p_plane.d; } } #endif // PLANE_H