#ifndef TRANSFORM2D_H #define TRANSFORM2D_H #if defined(_WIN32) # ifdef _GD_CPP_CORE_API_IMPL # define GD_CPP_CORE_API __declspec(dllexport) # else # define GD_CPP_CORE_API __declspec(dllimport) # endif #else # define GD_CPP_CORE_API #endif #include "Vector2.hpp" namespace godot { typedef Vector2 Size2; class Rect2; struct GD_CPP_CORE_API Transform2D { // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": // M = (elements[0][0] elements[1][0]) // (elements[0][1] elements[1][1]) // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, // and angle is measure from +X to +Y in a clockwise-fashion. Vector2 elements[3]; inline real_t tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } inline real_t tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } inline const Vector2& operator[](int p_idx) const { return elements[p_idx]; } inline Vector2& operator[](int p_idx) { return elements[p_idx]; } inline Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; } inline void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; } void invert(); Transform2D inverse() const; void affine_invert(); Transform2D affine_inverse() const; void set_rotation(real_t p_phi); real_t get_rotation() const; void set_rotation_and_scale(real_t p_phi,const Size2& p_scale); void rotate(real_t p_phi); void scale(const Size2& p_scale); void scale_basis(const Size2& p_scale); void translate( real_t p_tx, real_t p_ty); void translate( const Vector2& p_translation ); real_t basis_determinant() const; Size2 get_scale() const; inline const Vector2& get_origin() const { return elements[2]; } inline void set_origin(const Vector2& p_origin) { elements[2]=p_origin; } Transform2D scaled(const Size2& p_scale) const; Transform2D basis_scaled(const Size2& p_scale) const; Transform2D translated(const Vector2& p_offset) const; Transform2D rotated(real_t p_phi) const; Transform2D untranslated() const; void orthonormalize(); Transform2D orthonormalized() const; bool operator==(const Transform2D& p_transform) const; bool operator!=(const Transform2D& p_transform) const; void operator*=(const Transform2D& p_transform); Transform2D operator*(const Transform2D& p_transform) const; Transform2D interpolate_with(const Transform2D& p_transform, real_t p_c) const; Vector2 basis_xform(const Vector2& p_vec) const; Vector2 basis_xform_inv(const Vector2& p_vec) const; Vector2 xform(const Vector2& p_vec) const; Vector2 xform_inv(const Vector2& p_vec) const; Rect2 xform(const Rect2& p_vec) const; Rect2 xform_inv(const Rect2& p_vec) const; operator String() const; Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy); Transform2D(real_t p_rot, const Vector2& p_pos); inline Transform2D() { elements[0][0]=1.0; elements[1][1]=1.0; } }; } #endif // TRANSFORM2D_H