#ifndef GODOT_VECTOR3_HPP #define GODOT_VECTOR3_HPP #include #include namespace godot { class Basis; class Vector3i; class Vector3 { public: _FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; } enum Axis { AXIS_X, AXIS_Y, AXIS_Z, }; union { struct { real_t x; real_t y; real_t z; }; real_t coord[3] = { 0 }; }; inline const real_t &operator[](int p_axis) const { return coord[p_axis]; } inline real_t &operator[](int p_axis) { return coord[p_axis]; } void set_axis(int p_axis, real_t p_value); real_t get_axis(int p_axis) const; int min_axis() const; int max_axis() const; inline real_t length() const; inline real_t length_squared() const; inline void normalize(); inline Vector3 normalized() const; inline bool is_normalized() const; inline Vector3 inverse() const; inline void zero(); void snap(Vector3 p_val); Vector3 snapped(Vector3 p_val) const; void rotate(const Vector3 &p_axis, real_t p_phi); Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const; /* Static Methods between 2 vector3s */ inline Vector3 lerp(const Vector3 &p_to, real_t p_weight) const; inline Vector3 slerp(const Vector3 &p_to, real_t p_weight) const; Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const; Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; inline Vector3 cross(const Vector3 &p_b) const; inline real_t dot(const Vector3 &p_b) const; Basis outer(const Vector3 &p_b) const; Basis to_diagonal_matrix() const; inline Vector3 abs() const; inline Vector3 floor() const; inline Vector3 sign() const; inline Vector3 ceil() const; inline Vector3 round() const; inline real_t distance_to(const Vector3 &p_to) const; inline real_t distance_squared_to(const Vector3 &p_to) const; inline Vector3 posmod(const real_t p_mod) const; inline Vector3 posmodv(const Vector3 &p_modv) const; inline Vector3 project(const Vector3 &p_to) const; inline real_t angle_to(const Vector3 &p_to) const; inline Vector3 direction_to(const Vector3 &p_to) const; inline Vector3 slide(const Vector3 &p_normal) const; inline Vector3 bounce(const Vector3 &p_normal) const; inline Vector3 reflect(const Vector3 &p_normal) const; bool is_equal_approx(const Vector3 &p_v) const; /* Operators */ inline Vector3 &operator+=(const Vector3 &p_v); inline Vector3 operator+(const Vector3 &p_v) const; inline Vector3 &operator-=(const Vector3 &p_v); inline Vector3 operator-(const Vector3 &p_v) const; inline Vector3 &operator*=(const Vector3 &p_v); inline Vector3 operator*(const Vector3 &p_v) const; inline Vector3 &operator/=(const Vector3 &p_v); inline Vector3 operator/(const Vector3 &p_v) const; inline Vector3 &operator*=(real_t p_scalar); inline Vector3 operator*(real_t p_scalar) const; inline Vector3 &operator/=(real_t p_scalar); inline Vector3 operator/(real_t p_scalar) const; inline Vector3 operator-() const; inline bool operator==(const Vector3 &p_v) const; inline bool operator!=(const Vector3 &p_v) const; inline bool operator<(const Vector3 &p_v) const; inline bool operator<=(const Vector3 &p_v) const; inline bool operator>(const Vector3 &p_v) const; inline bool operator>=(const Vector3 &p_v) const; operator String() const; operator Vector3i() const; inline Vector3() {} inline Vector3(real_t p_x, real_t p_y, real_t p_z) { x = p_x; y = p_y; z = p_z; } Vector3(const Vector3i &p_ivec); }; Vector3 Vector3::cross(const Vector3 &p_b) const { Vector3 ret( (y * p_b.z) - (z * p_b.y), (z * p_b.x) - (x * p_b.z), (x * p_b.y) - (y * p_b.x)); return ret; } real_t Vector3::dot(const Vector3 &p_b) const { return x * p_b.x + y * p_b.y + z * p_b.z; } Vector3 Vector3::abs() const { return Vector3(Math::abs(x), Math::abs(y), Math::abs(z)); } Vector3 Vector3::sign() const { return Vector3(Math::sign(x), Math::sign(y), Math::sign(z)); } Vector3 Vector3::floor() const { return Vector3(Math::floor(x), Math::floor(y), Math::floor(z)); } Vector3 Vector3::ceil() const { return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z)); } Vector3 Vector3::round() const { return Vector3(Math::round(x), Math::round(y), Math::round(z)); } Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const { return Vector3( x + (p_weight * (p_to.x - x)), y + (p_weight * (p_to.y - y)), z + (p_weight * (p_to.z - z))); } Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const { real_t theta = angle_to(p_to); return rotated(cross(p_to).normalized(), theta * p_weight); } real_t Vector3::distance_to(const Vector3 &p_to) const { return (p_to - *this).length(); } real_t Vector3::distance_squared_to(const Vector3 &p_to) const { return (p_to - *this).length_squared(); } Vector3 Vector3::posmod(const real_t p_mod) const { return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod)); } Vector3 Vector3::posmodv(const Vector3 &p_modv) const { return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z)); } Vector3 Vector3::project(const Vector3 &p_to) const { return p_to * (dot(p_to) / p_to.length_squared()); } real_t Vector3::angle_to(const Vector3 &p_to) const { return Math::atan2(cross(p_to).length(), dot(p_to)); } Vector3 Vector3::direction_to(const Vector3 &p_to) const { Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z); ret.normalize(); return ret; } /* Operators */ Vector3 &Vector3::operator+=(const Vector3 &p_v) { x += p_v.x; y += p_v.y; z += p_v.z; return *this; } Vector3 Vector3::operator+(const Vector3 &p_v) const { return Vector3(x + p_v.x, y + p_v.y, z + p_v.z); } Vector3 &Vector3::operator-=(const Vector3 &p_v) { x -= p_v.x; y -= p_v.y; z -= p_v.z; return *this; } Vector3 Vector3::operator-(const Vector3 &p_v) const { return Vector3(x - p_v.x, y - p_v.y, z - p_v.z); } Vector3 &Vector3::operator*=(const Vector3 &p_v) { x *= p_v.x; y *= p_v.y; z *= p_v.z; return *this; } Vector3 Vector3::operator*(const Vector3 &p_v) const { return Vector3(x * p_v.x, y * p_v.y, z * p_v.z); } Vector3 &Vector3::operator/=(const Vector3 &p_v) { x /= p_v.x; y /= p_v.y; z /= p_v.z; return *this; } Vector3 Vector3::operator/(const Vector3 &p_v) const { return Vector3(x / p_v.x, y / p_v.y, z / p_v.z); } Vector3 &Vector3::operator*=(real_t p_scalar) { x *= p_scalar; y *= p_scalar; z *= p_scalar; return *this; } inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } Vector3 Vector3::operator*(real_t p_scalar) const { return Vector3(x * p_scalar, y * p_scalar, z * p_scalar); } Vector3 &Vector3::operator/=(real_t p_scalar) { x /= p_scalar; y /= p_scalar; z /= p_scalar; return *this; } Vector3 Vector3::operator/(real_t p_scalar) const { return Vector3(x / p_scalar, y / p_scalar, z / p_scalar); } Vector3 Vector3::operator-() const { return Vector3(-x, -y, -z); } bool Vector3::operator==(const Vector3 &p_v) const { return x == p_v.x && y == p_v.y && z == p_v.z; } bool Vector3::operator!=(const Vector3 &p_v) const { return x != p_v.x || y != p_v.y || z != p_v.z; } bool Vector3::operator<(const Vector3 &p_v) const { if (x == p_v.x) { if (y == p_v.y) { return z < p_v.z; } return y < p_v.y; } return x < p_v.x; } bool Vector3::operator>(const Vector3 &p_v) const { if (x == p_v.x) { if (y == p_v.y) { return z > p_v.z; } return y > p_v.y; } return x > p_v.x; } bool Vector3::operator<=(const Vector3 &p_v) const { if (x == p_v.x) { if (y == p_v.y) { return z <= p_v.z; } return y < p_v.y; } return x < p_v.x; } bool Vector3::operator>=(const Vector3 &p_v) const { if (x == p_v.x) { if (y == p_v.y) { return z >= p_v.z; } return y > p_v.y; } return x > p_v.x; } inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) { return p_a.cross(p_b); } inline real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) { return p_a.dot(p_b); } real_t Vector3::length() const { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return Math::sqrt(x2 + y2 + z2); } real_t Vector3::length_squared() const { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return x2 + y2 + z2; } void Vector3::normalize() { real_t lengthsq = length_squared(); if (lengthsq == 0) { x = y = z = 0; } else { real_t length = Math::sqrt(lengthsq); x /= length; y /= length; z /= length; } } Vector3 Vector3::normalized() const { Vector3 v = *this; v.normalize(); return v; } bool Vector3::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); } Vector3 Vector3::inverse() const { return Vector3(1.0 / x, 1.0 / y, 1.0 / z); } void Vector3::zero() { x = y = z = 0; } // slide returns the component of the vector along the given plane, specified by its normal vector. Vector3 Vector3::slide(const Vector3 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); #endif return *this - p_normal * this->dot(p_normal); } Vector3 Vector3::bounce(const Vector3 &p_normal) const { return -reflect(p_normal); } Vector3 Vector3::reflect(const Vector3 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); #endif return 2.0 * p_normal * this->dot(p_normal) - *this; } } // namespace godot #endif // GODOT_VECTOR3_HPP