#ifndef QUAT_H #define QUAT_H #include #include "Vector3.h" // #include "Basis.h" namespace godot { #define CMP_EPSILON 0.00001 typedef float real_t; class Quat{ public: real_t x,y,z,w; real_t length_squared() const; // down below real_t length() const { return ::sqrt(length_squared()); } void normalize() { *this /= length(); } Quat normalized() const { return *this / length(); } Quat inverse() const { return Quat( -x, -y, -z, w ); } real_t dot(const Quat& q) const; // down below void set_euler(const Vector3& p_euler) { real_t half_a1 = p_euler.x * 0.5; real_t half_a2 = p_euler.y * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = ::cos(half_a1); real_t sin_a1 = ::sin(half_a1); real_t cos_a2 = ::cos(half_a2); real_t sin_a2 = ::sin(half_a2); real_t cos_a3 = ::cos(half_a3); real_t sin_a3 = ::sin(half_a3); set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1, -sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3, sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2, -sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3); } Vector3 get_euler() const; // down below Quat slerp(const Quat& q, const real_t& t) const { Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(q); // adjust signs (if necessary) if ( cosom <0.0 ) { cosom = -cosom; to1.x = - q.x; to1.y = - q.y; to1.z = - q.z; to1.w = - q.w; } else { to1.x = q.x; to1.y = q.y; to1.z = q.z; to1.w = q.w; } // calculate coefficients if ( (1.0 - cosom) > CMP_EPSILON ) { // standard case (slerp) omega = ::acos(cosom); sinom = ::sin(omega); scale0 = ::sin((1.0 - t) * omega) / sinom; scale1 = ::sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values return Quat( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w ); } Quat slerpni(const Quat& q, const real_t& t) const { const Quat &from = *this; real_t dot = from.dot(q); if (::fabs(dot) > 0.9999) return from; real_t theta = ::acos(dot), sinT = 1.0 / ::sin(theta), newFactor = ::sin(t * theta) * sinT, invFactor = ::sin((1.0 - t) * theta) * sinT; return Quat(invFactor * from.x + newFactor * q.x, invFactor * from.y + newFactor * q.y, invFactor * from.z + newFactor * q.z, invFactor * from.w + newFactor * q.w); } Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const { //the only way to do slerp :| real_t t2 = (1.0-t)*t*2; Quat sp = this->slerp(q,t); Quat sq = prep.slerpni(postq,t); return sp.slerpni(sq,t2); } void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const { r_angle = 2 * ::acos(w); r_axis.x = x / ::sqrt(1-w*w); r_axis.y = y / ::sqrt(1-w*w); r_axis.z = z / ::sqrt(1-w*w); } void operator*=(const Quat& q); // down below Quat operator*(const Quat& q) const; // down below Quat operator*(const Vector3& v) const { return Quat( w * v.x + y * v.z - z * v.y, w * v.y + z * v.x - x * v.z, w * v.z + x * v.y - y * v.x, -x * v.x - y * v.y - z * v.z); } Vector3 xform(const Vector3& v) const { Quat q = *this * v; q *= this->inverse(); return Vector3(q.x,q.y,q.z); } // everything's down void operator+=(const Quat& q); void operator-=(const Quat& q); void operator*=(const real_t& s); void operator/=(const real_t& s); Quat operator+(const Quat& q2) const; Quat operator-(const Quat& q2) const; Quat operator-() const; Quat operator*(const real_t& s) const; Quat operator/(const real_t& s) const; bool operator==(const Quat& p_quat) const; bool operator!=(const Quat& p_quat) const; operator String() const { return String(); // @Todo } inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) { x=p_x; y=p_y; z=p_z; w=p_w; } inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { x=p_x; y=p_y; z=p_z; w=p_w; } Quat(const Vector3& axis, const real_t& angle) { real_t d = axis.length(); if (d==0) set(0,0,0,0); else { real_t sin_angle = ::sin(angle * 0.5); real_t cos_angle = ::cos(angle * 0.5); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } } Quat(const Vector3& v0, const Vector3& v1) // shortest arc { Vector3 c = v0.cross(v1); real_t d = v0.dot(v1); if (d < -1.0 + CMP_EPSILON) { x=0; y=1; z=0; w=0; } else { real_t s = ::sqrt((1.0 + d) * 2.0); real_t rs = 1.0 / s; x=c.x*rs; y=c.y*rs; z=c.z*rs; w=s * 0.5; } } inline Quat() {x=y=z=0; w=1; } }; real_t Quat::dot(const Quat& q) const { return x * q.x+y * q.y+z * q.z+w * q.w; } real_t Quat::length_squared() const { return dot(*this); } void Quat::operator+=(const Quat& q) { x += q.x; y += q.y; z += q.z; w += q.w; } void Quat::operator-=(const Quat& q) { x -= q.x; y -= q.y; z -= q.z; w -= q.w; } void Quat::operator*=(const real_t& s) { x *= s; y *= s; z *= s; w *= s; } void Quat::operator/=(const real_t& s) { *this *= 1.0 / s; } Quat Quat::operator+(const Quat& q2) const { const Quat& q1 = *this; return Quat( q1.x+q2.x, q1.y+q2.y, q1.z+q2.z, q1.w+q2.w ); } Quat Quat::operator-(const Quat& q2) const { const Quat& q1 = *this; return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w); } Quat Quat::operator*(const Quat& q2) const { Quat q1 = *this; q1 *= q2; return q1; } Quat Quat::operator-() const { const Quat& q2 = *this; return Quat( -q2.x, -q2.y, -q2.z, -q2.w); } Quat Quat::operator*(const real_t& s) const { return Quat(x * s, y * s, z * s, w * s); } Quat Quat::operator/(const real_t& s) const { return *this * (1.0 / s); } bool Quat::operator==(const Quat& p_quat) const { return x==p_quat.x && y==p_quat.y && z==p_quat.z && w==p_quat.w; } bool Quat::operator!=(const Quat& p_quat) const { return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w; } } #include "Basis.h" namespace godot { Vector3 Quat::get_euler() const { Basis m(*this); return m.get_euler(); } } #endif // QUAT_H