Merge pull request #84 from Zylann/string_and_math_fixes

String and math fixes
pull/86/head
Thomas Herzog 2018-01-23 11:34:13 +01:00 committed by GitHub
commit f8477b4195
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 270 additions and 67 deletions

View File

@ -64,9 +64,13 @@ public:
Vector3 get_scale() const;
Vector3 get_euler() const;
Vector3 get_euler_xyz() const;
void set_euler_xyz(const Vector3 &p_euler);
Vector3 get_euler_yxz() const;
void set_euler_yxz(const Vector3 &p_euler);
void set_euler(const Vector3& p_euler);
inline Vector3 get_euler() const { return get_euler_yxz(); }
inline void set_euler(const Vector3& p_euler) { set_euler_yxz(p_euler); }
// transposed dot products
real_t tdotx(const Vector3& v) const;

View File

@ -23,12 +23,16 @@ public:
Quat inverse() const;
void set_euler(const Vector3& p_euler);
void set_euler_xyz(const Vector3& p_euler);
Vector3 get_euler_xyz() const;
void set_euler_yxz(const Vector3& p_euler);
Vector3 get_euler_yxz() const;
inline void set_euler(const Vector3& p_euler) { set_euler_yxz(p_euler); }
inline Vector3 get_euler() const { return get_euler_yxz(); }
real_t dot(const Quat& q) const;
Vector3 get_euler() const;
Quat slerp(const Quat& q, const real_t& t) const;
Quat slerpni(const Quat& q, const real_t& t) const;

View File

@ -37,6 +37,14 @@ public:
~String();
static String num(double p_num, int p_decimals = -1);
static String num_scientific(double p_num);
static String num_real(double p_num);
static String num_int64(int64_t p_num, int base = 10, bool capitalize_hex = false);
static String chr(godot_char_type p_char);
static String md5(const uint8_t *p_md5);
static String hex_encode_buffer(const uint8_t *p_buffer, int p_len);
wchar_t &operator[](const int idx);
wchar_t operator[](const int idx) const;

View File

@ -633,8 +633,7 @@ void AABB::get_edge(int p_edge,Vector3& r_from,Vector3& r_to) const {
AABB::operator String() const {
//return String()+position +" - "+ size;
return String(); // @Todo
return String() + position + " - " + size;
}
}

View File

@ -59,7 +59,7 @@ void Basis::invert()
elements[0][2] * co[2];
ERR_FAIL_COND(det != 0);
ERR_FAIL_COND(det == 0);
real_t s = 1.0/det;
@ -179,8 +179,18 @@ Vector3 Basis::get_scale() const
);
}
Vector3 Basis::get_euler() const
{
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis::get_euler_xyz() const {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
@ -190,50 +200,130 @@ Vector3 Basis::get_euler() const
Vector3 euler;
if (is_rotation() == false)
return euler;
euler.y = ::asin(elements[0][2]);
if ( euler.y < Math_PI*0.5) {
if ( euler.y > -Math_PI*0.5) {
euler.x = ::atan2(-elements[1][2],elements[2][2]);
euler.z = ::atan2(-elements[0][1],elements[0][0]);
ERR_FAIL_COND_V(is_rotation() == false, euler);
real_t sy = elements[0][2];
if (sy < 1.0) {
if (sy > -1.0) {
// is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0;
euler.y = atan2(elements[0][2], elements[0][0]);
euler.z = 0;
} else {
euler.x = ::atan2(-elements[1][2], elements[2][2]);
euler.y = ::asin(sy);
euler.z = ::atan2(-elements[0][1], elements[0][0]);
}
} else {
real_t r = ::atan2(elements[1][0],elements[1][1]);
euler.x = -::atan2(elements[0][1], elements[1][1]);
euler.y = -Math_PI / 2.0;
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = ::atan2(elements[0][1],elements[1][1]);
euler.x = ::atan2(elements[0][1], elements[1][1]);
euler.y = Math_PI / 2.0;
euler.z = 0.0;
}
return euler;
}
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis::set_euler_xyz(const Vector3 &p_euler) {
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat * (ymat * zmat);
}
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler;
ERR_FAIL_COND_V(is_rotation() == false, euler);
real_t m12 = elements[1][2];
if (m12 < 1) {
if (m12 > -1) {
// is this a pure X rotation?
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = atan2(-m12, elements[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
euler.y = atan2(elements[0][2], elements[2][2]);
euler.z = atan2(elements[1][0], elements[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
void Basis::set_euler(const Vector3& p_euler)
{
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis::set_euler_yxz(const Vector3 &p_euler) {
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat*(ymat*zmat);
*this = ymat * xmat * zmat;
}
// transposed dot products
real_t Basis::tdotx(const Vector3& v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
@ -344,7 +434,16 @@ Basis Basis::operator*(real_t p_val) const {
Basis::operator String() const
{
String s;
// @Todo
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i != 0 || j != 0)
s += ", ";
s += String::num(elements[i][j]);
}
}
return s;
}
@ -398,7 +497,7 @@ Basis Basis::transpose_xform(const Basis& m) const
void Basis::orthonormalize()
{
ERR_FAIL_COND(determinant() != 0);
ERR_FAIL_COND(determinant() == 0);
// Gram-Schmidt Process
@ -617,7 +716,8 @@ Basis::Basis(const Vector3& p_axis, real_t p_phi) {
}
Basis::operator Quat() const {
ERR_FAIL_COND_V(is_rotation() == false, Quat());
//commenting this check because precision issues cause it to fail when it shouldn't
//ERR_FAIL_COND_V(is_rotation() == false, Quat());
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
real_t temp[4];

View File

@ -388,7 +388,7 @@ String Color::to_html(bool p_alpha) const
Color::operator String() const
{
return String(); // @Todo
return String::num(r) + ", " + String::num(g) + ", " + String::num(b) + ", " + String::num(a);
}

View File

@ -7,6 +7,76 @@
namespace godot {
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses XYZ convention (Z is the first rotation).
void Quat::set_euler_xyz(const Vector3 &p_euler) {
real_t half_a1 = p_euler.x * 0.5;
real_t half_a2 = p_euler.y * 0.5;
real_t half_a3 = p_euler.z * 0.5;
// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = ::cos(half_a1);
real_t sin_a1 = ::sin(half_a1);
real_t cos_a2 = ::cos(half_a2);
real_t sin_a2 = ::sin(half_a2);
real_t cos_a3 = ::cos(half_a3);
real_t sin_a3 = ::sin(half_a3);
set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
-sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
}
// get_euler_xyz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses XYZ convention (Z is the first rotation).
Vector3 Quat::get_euler_xyz() const {
Basis m(*this);
return m.get_euler_xyz();
}
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
void Quat::set_euler_yxz(const Vector3 &p_euler) {
real_t half_a1 = p_euler.y * 0.5;
real_t half_a2 = p_euler.x * 0.5;
real_t half_a3 = p_euler.z * 0.5;
// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = ::cos(half_a1);
real_t sin_a1 = ::sin(half_a1);
real_t cos_a2 = ::cos(half_a2);
real_t sin_a2 = ::sin(half_a2);
real_t cos_a3 = ::cos(half_a3);
real_t sin_a3 = ::sin(half_a3);
set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
-sin_a1 * sin_a2 * cos_a3 + cos_a1 * sin_a2 * sin_a3,
sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
}
// get_euler_yxz returns a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// This implementation uses YXZ convention (Z is the first rotation).
Vector3 Quat::get_euler_yxz() const {
Basis m(*this);
return m.get_euler_yxz();
}
real_t Quat::length() const
{
return ::sqrt(length_squared());
@ -27,29 +97,6 @@ Quat Quat::inverse() const
return Quat( -x, -y, -z, w );
}
void Quat::set_euler(const Vector3& p_euler)
{
real_t half_a1 = p_euler.x * 0.5;
real_t half_a2 = p_euler.y * 0.5;
real_t half_a3 = p_euler.z * 0.5;
// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = ::cos(half_a1);
real_t sin_a1 = ::sin(half_a1);
real_t cos_a2 = ::cos(half_a2);
real_t sin_a2 = ::sin(half_a2);
real_t cos_a3 = ::cos(half_a3);
real_t sin_a3 = ::sin(half_a3);
set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
-sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
-sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
}
Quat Quat::slerp(const Quat& q, const real_t& t) const {
Quat to1;
@ -263,11 +310,4 @@ bool Quat::operator!=(const Quat& p_quat) const {
return x!=p_quat.x || y!=p_quat.y || z!=p_quat.z || w!=p_quat.w;
}
Vector3 Quat::get_euler() const
{
Basis m(*this);
return m.get_euler();
}
}

View File

@ -24,6 +24,55 @@ const char *godot::CharString::get_data() const {
return godot::api->godot_char_string_get_data(&_char_string);
}
String String::num(double p_num, int p_decimals) {
String new_string;
new_string._godot_string = godot::api->godot_string_num_with_decimals(p_num, p_decimals);
return new_string;
}
String String::num_scientific(double p_num) {
String new_string;
new_string._godot_string = godot::api->godot_string_num_scientific(p_num);
return new_string;
}
String String::num_real(double p_num) {
String new_string;
new_string._godot_string = godot::api->godot_string_num_real(p_num);
return new_string;
}
String String::num_int64(int64_t p_num, int base, bool capitalize_hex) {
String new_string;
new_string._godot_string = godot::api->godot_string_num_int64_capitalized(p_num, base, capitalize_hex);
return new_string;
}
String String::chr(godot_char_type p_char) {
String new_string;
new_string._godot_string = godot::api->godot_string_chr(p_char);
return new_string;
}
String String::md5(const uint8_t *p_md5) {
String new_string;
new_string._godot_string = godot::api->godot_string_md5(p_md5);
return new_string;
}
String String::hex_encode_buffer(const uint8_t *p_buffer, int p_len) {
String new_string;
new_string._godot_string = godot::api->godot_string_hex_encode_buffer(p_buffer, p_len);
return new_string;
}
godot::String::String() {
godot::api->godot_string_new(&_godot_string);
}

View File

@ -340,8 +340,7 @@ Transform2D Transform2D::interpolate_with(const Transform2D& p_transform, real_t
Transform2D::operator String() const {
//return String(String()+elements[0]+", "+elements[1]+", "+elements[2]);
return String(); // @Todo
return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
}
}

View File

@ -252,7 +252,7 @@ Vector2 Vector2::snapped(const Vector2& p_by) const
Vector2::operator String() const
{
return String(); /* @Todo String::num() */
return String::num(x) + ", " + String::num(y);
}

View File

@ -327,7 +327,7 @@ Vector3 Vector3::snapped(const float by)
Vector3::operator String() const
{
return String(); // @Todo
return String::num(x) + ", " + String::num(y) + ", " + String::num(z);
}