diff --git a/SConstruct b/SConstruct index 2f4ad8e1..116a3d74 100644 --- a/SConstruct +++ b/SConstruct @@ -147,7 +147,7 @@ elif env['platform'] == 'windows': # MSVC env.Append(LINKFLAGS=['/WX']) if env['target'] == 'debug': - env.Append(CCFLAGS=['/EHsc', '/D_DEBUG', '/MDd']) + env.Append(CCFLAGS=['/Z7', '/Od', '/EHsc', '/D_DEBUG', '/MDd']) elif env['target'] == 'release': env.Append(CCFLAGS=['/O2', '/EHsc', '/DNDEBUG', '/MD']) diff --git a/include/core/Basis.hpp b/include/core/Basis.hpp index 3ea9c5d7..b559b003 100644 --- a/include/core/Basis.hpp +++ b/include/core/Basis.hpp @@ -1,6 +1,8 @@ #ifndef BASIS_H #define BASIS_H +#include + #include "Defs.hpp" #include "Vector3.hpp" @@ -10,12 +12,291 @@ namespace godot { class Quat; class Basis { +private: + // This helper template is for mimicking the behavior difference between the engine + // and script interfaces that logically script sees matrices as column major, while + // the engine stores them in row major to efficiently take advantage of SIMD + // instructions in case of matrix-vector multiplications. + // With this helper template native scripts see the data as if it was column major + // without actually transposing the basis matrix at the script-engine boundary. + template + class ColumnVector3 { + private: + template + class ColumnVectorComponent { + private: + Vector3 elements[3]; + + protected: + inline ColumnVectorComponent &operator=(const ColumnVectorComponent &p_value) { + return *this = real_t(p_value); + } + + inline ColumnVectorComponent(const ColumnVectorComponent &p_value) { + *this = real_t(p_value); + } + + inline ColumnVectorComponent &operator=(const real_t &p_value) { + element[component][column] = p_value; + return *this; + } + + inline operator real_t() const { + return element[component][column]; + } + }; + + public: + enum Axis { + AXIS_X, + AXIS_Y, + AXIS_Z, + }; + + union { + ColumnVectorComponent x; + ColumnVectorComponent y; + ColumnVectorComponent z; + + Vector3 elements[3]; // Not for direct access, use [] operator instead + }; + + inline ColumnVector3 &operator=(const ColumnVector3 &p_value) { + return *this = Vector3(p_value); + } + + inline ColumnVector3(const ColumnVector3 &p_value) { + *this = Vector3(p_value); + } + + inline ColumnVector3 &operator=(const Vector3 &p_value) { + elements[0][column] = p_value.x; + elements[1][column] = p_value.y; + elements[2][column] = p_value.z; + return *this; + } + + inline operator Vector3() const { + return Vector3(elements[0][column], elements[1][column], elements[2][column]); + } + + // Unfortunately, we also need to replicate the other interfaces of Vector3 in + // order for being able to directly operate on these "meta-Vector3" objects without + // an explicit cast or an intermediate assignment to a real Vector3 object. + + inline const real_t &operator[](int p_axis) const { + return elements[p_axis][column]; + } + + inline real_t &operator[](int p_axis) { + return elements[p_axis][column]; + } + + inline ColumnVector3 &operator+=(const Vector3 &p_v) { + return *this = *this + p_v; + } + + inline Vector3 operator+(const Vector3 &p_v) const { + return Vector3(*this) + p_v; + } + + inline ColumnVector3 &operator-=(const Vector3 &p_v) { + return *this = *this - p_v; + } + + inline Vector3 operator-(const Vector3 &p_v) const { + return Vector3(*this) - p_v; + } + + inline ColumnVector3 &operator*=(const Vector3 &p_v) { + return *this = *this * p_v; + } + + inline Vector3 operator*(const Vector3 &p_v) const { + return Vector3(*this) * p_v; + } + + inline ColumnVector3 &operator/=(const Vector3 &p_v) { + return *this = *this / p_v; + } + + inline Vector3 operator/(const Vector3 &p_v) const { + return Vector3(*this) / p_v; + } + + inline ColumnVector3 &operator*=(real_t p_scalar) { + return *this = *this * p_scalar; + } + + inline Vector3 operator*(real_t p_scalar) const { + return Vector3(*this) * p_scalar; + } + + inline ColumnVector3 &operator/=(real_t p_scalar) { + return *this = *this / p_scalar; + } + + inline Vector3 operator/(real_t p_scalar) const { + return Vector3(*this) / p_scalar; + } + + inline Vector3 operator-() const { + return -Vector3(*this); + } + + inline bool operator==(const Vector3 &p_v) const { + return Vector3(*this) == p_v; + } + + inline bool operator!=(const Vector3 &p_v) const { + return Vector3(*this) != p_v; + } + + inline bool operator<(const Vector3 &p_v) const { + return Vector3(*this) < p_v; + } + + inline bool operator<=(const Vector3 &p_v) const { + return Vector3(*this) <= p_v; + } + + inline Vector3 abs() const { + return Vector3(*this).abs(); + } + + inline Vector3 ceil() const { + return Vector3(*this).ceil(); + } + + inline Vector3 cross(const Vector3 &b) const { + return Vector3(*this).cross(b); + } + + inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const { + return Vector3(*this).linear_interpolate(p_b, p_t); + } + + inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const { + return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t); + } + + inline Vector3 bounce(const Vector3 &p_normal) const { + return Vector3(*this).bounce(p_normal); + } + + inline real_t length() const { + return Vector3(*this).length(); + } + + inline real_t length_squared() const { + return Vector3(*this).length_squared(); + } + + inline real_t distance_squared_to(const Vector3 &b) const { + return Vector3(*this).distance_squared_to(b); + } + + inline real_t distance_to(const Vector3 &b) const { + return Vector3(*this).distance_to(b); + } + + inline real_t dot(const Vector3 &b) const { + return Vector3(*this).dot(b); + } + + inline real_t angle_to(const Vector3 &b) const { + return Vector3(*this).angle_to(b); + } + + inline Vector3 floor() const { + return Vector3(*this).floor(); + } + + inline Vector3 inverse() const { + return Vector3(*this).inverse(); + } + + inline bool is_normalized() const { + return Vector3(*this).is_normalized(); + } + + inline Basis outer(const Vector3 &b) const { + return Vector3(*this).outer(b); + } + + inline int max_axis() const { + return Vector3(*this).max_axis(); + } + + inline int min_axis() const { + return Vector3(*this).min_axis(); + } + + inline void normalize() { + Vector3 v = *this; + v.normalize(); + *this = v; + } + + inline Vector3 normalized() const { + return Vector3(*this).normalized(); + } + + inline Vector3 reflect(const Vector3 &by) const { + return Vector3(*this).reflect(by); + } + + inline Vector3 rotated(const Vector3 &axis, const real_t phi) const { + return Vector3(*this).rotated(axis, phi); + } + + inline void rotate(const Vector3 &p_axis, real_t p_phi) { + Vector3 v = *this; + v.rotate(p_axis, p_phi); + *this = v; + } + + inline Vector3 slide(const Vector3 &by) const { + return Vector3(*this).slide(by); + } + + inline void snap(real_t p_val) { + Vector3 v = *this; + v.snap(p_val); + *this = v; + } + + inline Vector3 snapped(const float by) { + return Vector3(*this).snapped(by); + } + + inline operator String() const { + return String(Vector3(*this)) + } + }; + public: union { - Vector3 elements[3]; - Vector3 x, y, z; + ColumnVector3<0> x; + ColumnVector3<1> y; + ColumnVector3<2> z; + + Vector3 elements[3]; // Not for direct access, use [] operator instead }; + inline Basis(const Basis &p_basis) { + elements[0] = p_basis.elements[0]; + elements[1] = p_basis.elements[1]; + elements[2] = p_basis.elements[2]; + } + + inline Basis &operator=(const Basis &p_basis) { + elements[0] = p_basis.elements[0]; + elements[1] = p_basis.elements[1]; + elements[2] = p_basis.elements[2]; + return *this; + } + Basis(const Quat &p_quat); // euler Basis(const Vector3 &p_euler); // euler Basis(const Vector3 &p_axis, real_t p_phi); @@ -26,8 +307,16 @@ public: Basis(); - const Vector3 &operator[](int axis) const; - Vector3 &operator[](int axis); + const Vector3 &operator[](int axis) const { + return get_axis(axis); + } + + ColumnVector3<0> &operator[](int axis) { + // We need to do a little pointer magic to get this to work, because the + // ColumnVector3 template takes the axis as a template parameter. + // Don't touch this unless you're sure what you're doing! + return (reinterpret_cast(reinterpret_cast(this) + axis))->x; + } void invert(); diff --git a/include/core/Vector2.hpp b/include/core/Vector2.hpp index 190217de..26e9b634 100644 --- a/include/core/Vector2.hpp +++ b/include/core/Vector2.hpp @@ -5,6 +5,8 @@ #include "Defs.hpp" +#include + namespace godot { class String; @@ -20,36 +22,75 @@ struct Vector2 { real_t height; }; + inline Vector2(real_t p_x, real_t p_y) { + x = p_x; + y = p_y; + } + + inline Vector2() { + x = 0; + y = 0; + } + inline real_t &operator[](int p_idx) { return p_idx ? y : x; } + inline const real_t &operator[](int p_idx) const { return p_idx ? y : x; } - Vector2 operator+(const Vector2 &p_v) const; + inline Vector2 operator+(const Vector2 &p_v) const { + return Vector2(x + p_v.x, y + p_v.y); + } - void operator+=(const Vector2 &p_v); + inline void operator+=(const Vector2 &p_v) { + x += p_v.x; + y += p_v.y; + } - Vector2 operator-(const Vector2 &p_v) const; + inline Vector2 operator-(const Vector2 &p_v) const { + return Vector2(x - p_v.x, y - p_v.y); + } - void operator-=(const Vector2 &p_v); + inline void operator-=(const Vector2 &p_v) { + x -= p_v.x; + y -= p_v.y; + } - Vector2 operator*(const Vector2 &p_v1) const; + inline Vector2 operator*(const Vector2 &p_v1) const { + return Vector2(x * p_v1.x, y * p_v1.y); + } - Vector2 operator*(const real_t &rvalue) const; + inline Vector2 operator*(const real_t &rvalue) const { + return Vector2(x * rvalue, y * rvalue); + } - void operator*=(const real_t &rvalue); + inline void operator*=(const real_t &rvalue) { + x *= rvalue; + y *= rvalue; + } - inline void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } + inline void operator*=(const Vector2 &rvalue) { + *this = *this * rvalue; + } - Vector2 operator/(const Vector2 &p_v1) const; + inline Vector2 operator/(const Vector2 &p_v1) const { + return Vector2(x / p_v1.x, y / p_v1.y); + } - Vector2 operator/(const real_t &rvalue) const; + inline Vector2 operator/(const real_t &rvalue) const { + return Vector2(x / rvalue, y / rvalue); + } - void operator/=(const real_t &rvalue); + inline void operator/=(const real_t &rvalue) { + x /= rvalue; + y /= rvalue; + } - Vector2 operator-() const; + inline Vector2 operator-() const { + return Vector2(-x, -y); + } bool operator==(const Vector2 &p_vec2) const; @@ -58,23 +99,56 @@ struct Vector2 { inline bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); } inline bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); } - void normalize(); + inline void normalize() { + real_t l = x * x + y * y; + if (l != 0) { + l = sqrt(l); + x /= l; + y /= l; + } + } - Vector2 normalized() const; + inline Vector2 normalized() const { + Vector2 v = *this; + v.normalize(); + return v; + } - real_t length() const; - real_t length_squared() const; + inline real_t length() const { + return sqrt(x * x + y * y); + } - real_t distance_to(const Vector2 &p_vector2) const; - real_t distance_squared_to(const Vector2 &p_vector2) const; + inline real_t length_squared() const { + return x * x + y * y; + } - real_t angle_to(const Vector2 &p_vector2) const; - real_t angle_to_point(const Vector2 &p_vector2) const; + inline real_t distance_to(const Vector2 &p_vector2) const { + return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); + } - real_t dot(const Vector2 &p_other) const; + inline real_t distance_squared_to(const Vector2 &p_vector2) const { + return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); + } - real_t cross(const Vector2 &p_other) const; - Vector2 cross(real_t p_other) const; + inline real_t angle_to(const Vector2 &p_vector2) const { + return atan2(cross(p_vector2), dot(p_vector2)); + } + + inline real_t angle_to_point(const Vector2 &p_vector2) const { + return atan2(y - p_vector2.y, x - p_vector2.x); + } + + inline real_t dot(const Vector2 &p_other) const { + return x * p_other.x + y * p_other.y; + } + + inline real_t cross(const Vector2 &p_other) const { + return x * p_other.y - y * p_other.x; + } + + inline Vector2 cross(real_t p_other) const { + return Vector2(p_other * y, -p_other * x); + } Vector2 project(const Vector2 &p_vec) const; @@ -82,39 +156,63 @@ struct Vector2 { Vector2 clamped(real_t p_len) const; - static Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t); + static inline Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) { + Vector2 res = p_a; + res.x += (p_t * (p_b.x - p_a.x)); + res.y += (p_t * (p_b.y - p_a.y)); + return res; + } + + inline Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const { + Vector2 res = *this; + res.x += (p_t * (p_b.x - x)); + res.y += (p_t * (p_b.y - y)); + return res; + } - Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const; Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const; - Vector2 slide(const Vector2 &p_vec) const; + inline Vector2 slide(const Vector2 &p_vec) const { + return p_vec - *this * this->dot(p_vec); + } - Vector2 reflect(const Vector2 &p_vec) const; + inline Vector2 reflect(const Vector2 &p_vec) const { + return p_vec - *this * this->dot(p_vec) * 2.0; + } - real_t angle() const; + inline real_t angle() const { + return atan2(y, x); + } - void set_rotation(real_t p_radians); + inline void set_rotation(real_t p_radians) { + x = cosf(p_radians); + y = sinf(p_radians); + } - Vector2 abs() const; - Vector2 rotated(real_t p_by) const; + inline Vector2 abs() const { + return Vector2(fabs(x), fabs(y)); + } - Vector2 tangent() const; + inline Vector2 rotated(real_t p_by) const { + Vector2 v; + v.set_rotation(angle() + p_by); + v *= length(); + return v; + } - Vector2 floor() const; + inline Vector2 tangent() const { + return Vector2(y, -x); + } + + inline Vector2 floor() const { + return Vector2(::floor(x), ::floor(y)); + } + + inline Vector2 snapped(const Vector2 &p_by) const; - Vector2 snapped(const Vector2 &p_by) const; inline real_t aspect() const { return width / height; } operator String() const; - - inline Vector2(real_t p_x, real_t p_y) { - x = p_x; - y = p_y; - } - inline Vector2() { - x = 0; - y = 0; - } }; inline Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) { diff --git a/include/core/Vector3.hpp b/include/core/Vector3.hpp index df1d60c9..2d78f211 100644 --- a/include/core/Vector3.hpp +++ b/include/core/Vector3.hpp @@ -1,10 +1,14 @@ #ifndef VECTOR3_H #define VECTOR3_H +#include + #include "Defs.hpp" #include "String.hpp" +#include + namespace godot { class Basis; @@ -24,80 +28,192 @@ struct Vector3 { real_t z; }; - real_t coord[3]; + real_t coord[3]; // Not for direct access, use [] operator instead }; - Vector3(real_t x, real_t y, real_t z); + inline Vector3(real_t x, real_t y, real_t z) { + this->x = x; + this->y = y; + this->z = z; + } - Vector3(); + inline Vector3() { + this->x = 0; + this->y = 0; + this->z = 0; + } - const real_t &operator[](int p_axis) const; + inline const real_t &operator[](int p_axis) const { + return coord[p_axis]; + } - real_t &operator[](int p_axis); + inline real_t &operator[](int p_axis) { + return coord[p_axis]; + } - Vector3 &operator+=(const Vector3 &p_v); + inline Vector3 &operator+=(const Vector3 &p_v) { + x += p_v.x; + y += p_v.y; + z += p_v.z; + return *this; + } - Vector3 operator+(const Vector3 &p_v) const; + inline Vector3 operator+(const Vector3 &p_v) const { + Vector3 v = *this; + v += p_v; + return v; + } - Vector3 &operator-=(const Vector3 &p_v); + inline Vector3 &operator-=(const Vector3 &p_v) { + x -= p_v.x; + y -= p_v.y; + z -= p_v.z; + return *this; + } - Vector3 operator-(const Vector3 &p_v) const; + inline Vector3 operator-(const Vector3 &p_v) const { + Vector3 v = *this; + v -= p_v; + return v; + } - Vector3 &operator*=(const Vector3 &p_v); + inline Vector3 &operator*=(const Vector3 &p_v) { + x *= p_v.x; + y *= p_v.y; + z *= p_v.z; + return *this; + } - Vector3 operator*(const Vector3 &p_v) const; + inline Vector3 operator*(const Vector3 &p_v) const { + Vector3 v = *this; + v *= p_v; + return v; + } - Vector3 &operator/=(const Vector3 &p_v); + inline Vector3 &operator/=(const Vector3 &p_v) { + x /= p_v.x; + y /= p_v.y; + z /= p_v.z; + return *this; + } - Vector3 operator/(const Vector3 &p_v) const; + inline Vector3 operator/(const Vector3 &p_v) const { + Vector3 v = *this; + v /= p_v; + return v; + } - Vector3 &operator*=(real_t p_scalar); + inline Vector3 &operator*=(real_t p_scalar) { + *this *= Vector3(p_scalar, p_scalar, p_scalar); + return *this; + } - Vector3 operator*(real_t p_scalar) const; + inline Vector3 operator*(real_t p_scalar) const { + Vector3 v = *this; + v *= p_scalar; + return v; + } - Vector3 &operator/=(real_t p_scalar); + inline Vector3 &operator/=(real_t p_scalar) { + *this /= Vector3(p_scalar, p_scalar, p_scalar); + return *this; + } - Vector3 operator/(real_t p_scalar) const; + inline Vector3 operator/(real_t p_scalar) const { + Vector3 v = *this; + v /= p_scalar; + return v; + } - Vector3 operator-() const; + inline Vector3 operator-() const { + return Vector3(-x, -y, -z); + } - bool operator==(const Vector3 &p_v) const; + inline bool operator==(const Vector3 &p_v) const { + return (x == p_v.x && y == p_v.y && z == p_v.z); + } - bool operator!=(const Vector3 &p_v) const; + inline bool operator!=(const Vector3 &p_v) const { + return (x != p_v.x || y != p_v.y || z != p_v.z); + } bool operator<(const Vector3 &p_v) const; bool operator<=(const Vector3 &p_v) const; - Vector3 abs() const; + inline Vector3 abs() const { + return Vector3(::fabs(x), ::fabs(y), ::fabs(z)); + } - Vector3 ceil() const; + inline Vector3 ceil() const { + return Vector3(::ceil(x), ::ceil(y), ::ceil(z)); + } - Vector3 cross(const Vector3 &b) const; + inline Vector3 cross(const Vector3 &b) const { + Vector3 ret( + (y * b.z) - (z * b.y), + (z * b.x) - (x * b.z), + (x * b.y) - (y * b.x)); - Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const; + return ret; + } + + inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const { + return Vector3( + x + (p_t * (p_b.x - x)), + y + (p_t * (p_b.y - y)), + z + (p_t * (p_b.z - z))); + } Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const; - Vector3 bounce(const Vector3 &p_normal) const; + Vector3 bounce(const Vector3 &p_normal) const { + return -reflect(p_normal); + } - real_t length() const; + inline real_t length() const { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; - real_t length_squared() const; + return ::sqrt(x2 + y2 + z2); + } - real_t distance_squared_to(const Vector3 &b) const; + inline real_t length_squared() const { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; - real_t distance_to(const Vector3 &b) const; + return x2 + y2 + z2; + } - real_t dot(const Vector3 &b) const; + inline real_t distance_squared_to(const Vector3 &b) const { + return (b - *this).length_squared(); + } - real_t angle_to(const Vector3 &b) const; + inline real_t distance_to(const Vector3 &b) const { + return (b - *this).length(); + } - Vector3 floor() const; + inline real_t dot(const Vector3 &b) const { + return x * b.x + y * b.y + z * b.z; + } - Vector3 inverse() const; + inline real_t angle_to(const Vector3 &b) const { + return std::atan2(cross(b).length(), dot(b)); + } - bool is_normalized() const; + inline Vector3 floor() const { + return Vector3(::floor(x), ::floor(y), ::floor(z)); + } + + inline Vector3 inverse() const { + return Vector3(1.f / x, 1.f / y, 1.f / z); + } + + inline bool is_normalized() const { + return std::abs(length_squared() - 1.f) < 0.00001f; + } Basis outer(const Vector3 &b) const; @@ -105,21 +221,46 @@ struct Vector3 { int min_axis() const; - void normalize(); + inline void normalize() { + real_t l = length(); + if (l == 0) { + x = y = z = 0; + } else { + x /= l; + y /= l; + z /= l; + } + } - Vector3 normalized() const; + inline Vector3 normalized() const { + Vector3 v = *this; + v.normalize(); + return v; + } - Vector3 reflect(const Vector3 &by) const; + inline Vector3 reflect(const Vector3 &by) const { + return by - *this * this->dot(by) * 2.f; + } - Vector3 rotated(const Vector3 &axis, const real_t phi) const; + inline Vector3 rotated(const Vector3 &axis, const real_t phi) const { + Vector3 v = *this; + v.rotate(axis, phi); + return v; + } void rotate(const Vector3 &p_axis, real_t p_phi); - Vector3 slide(const Vector3 &by) const; + inline Vector3 slide(const Vector3 &by) const { + return by - *this * this->dot(by); + } void snap(real_t p_val); - Vector3 snapped(const float by); + inline Vector3 snapped(const float by) { + Vector3 v = *this; + v.snap(by); + return v; + } operator String() const; }; diff --git a/src/core/Basis.cpp b/src/core/Basis.cpp index 73d9cd58..466f309f 100644 --- a/src/core/Basis.cpp +++ b/src/core/Basis.cpp @@ -31,15 +31,6 @@ Basis::Basis() { elements[2][2] = 1; } -const Vector3 &Basis::operator[](int axis) const { - - return elements[axis]; -} -Vector3 &Basis::operator[](int axis) { - - return elements[axis]; -} - #define cofac(row1, col1, row2, col2) \ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) diff --git a/src/core/Vector2.cpp b/src/core/Vector2.cpp index 66f6bdd7..2da6f479 100644 --- a/src/core/Vector2.cpp +++ b/src/core/Vector2.cpp @@ -1,61 +1,11 @@ #include "Vector2.hpp" -#include - #include #include "String.hpp" namespace godot { -Vector2 Vector2::operator+(const Vector2 &p_v) const { - return Vector2(x + p_v.x, y + p_v.y); -} - -void Vector2::operator+=(const Vector2 &p_v) { - x += p_v.x; - y += p_v.y; -} - -Vector2 Vector2::operator-(const Vector2 &p_v) const { - return Vector2(x - p_v.x, y - p_v.y); -} - -void Vector2::operator-=(const Vector2 &p_v) { - x -= p_v.x; - y -= p_v.y; -} - -Vector2 Vector2::operator*(const Vector2 &p_v1) const { - return Vector2(x * p_v1.x, y * p_v1.y); -} - -Vector2 Vector2::operator*(const real_t &rvalue) const { - return Vector2(x * rvalue, y * rvalue); -} - -void Vector2::operator*=(const real_t &rvalue) { - x *= rvalue; - y *= rvalue; -} - -Vector2 Vector2::operator/(const Vector2 &p_v1) const { - return Vector2(x / p_v1.x, y / p_v1.y); -} - -Vector2 Vector2::operator/(const real_t &rvalue) const { - return Vector2(x / rvalue, y / rvalue); -} - -void Vector2::operator/=(const real_t &rvalue) { - x /= rvalue; - y /= rvalue; -} - -Vector2 Vector2::operator-() const { - return Vector2(-x, -y); -} - bool Vector2::operator==(const Vector2 &p_vec2) const { return x == p_vec2.x && y == p_vec2.y; } @@ -64,56 +14,6 @@ bool Vector2::operator!=(const Vector2 &p_vec2) const { return x != p_vec2.x || y != p_vec2.y; } -void Vector2::normalize() { - real_t l = x * x + y * y; - if (l != 0) { - l = sqrt(l); - x /= l; - y /= l; - } -} - -Vector2 Vector2::normalized() const { - Vector2 v = *this; - v.normalize(); - return v; -} - -real_t Vector2::length() const { - return sqrt(x * x + y * y); -} -real_t Vector2::length_squared() const { - return x * x + y * y; -} - -real_t Vector2::distance_to(const Vector2 &p_vector2) const { - return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); -} - -real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { - return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); -} - -real_t Vector2::angle_to(const Vector2 &p_vector2) const { - return atan2(cross(p_vector2), dot(p_vector2)); -} - -real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { - return atan2(y - p_vector2.y, x - p_vector2.x); -} - -real_t Vector2::dot(const Vector2 &p_other) const { - return x * p_other.x + y * p_other.y; -} - -real_t Vector2::cross(const Vector2 &p_other) const { - return x * p_other.y - y * p_other.x; -} - -Vector2 Vector2::cross(real_t p_other) const { - return Vector2(p_other * y, -p_other * x); -} - Vector2 Vector2::project(const Vector2 &p_vec) const { Vector2 v1 = p_vec; Vector2 v2 = *this; @@ -134,19 +34,6 @@ Vector2 Vector2::clamped(real_t p_len) const { return v; } -Vector2 Vector2::linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) { - Vector2 res = p_a; - res.x += (p_t * (p_b.x - p_a.x)); - res.y += (p_t * (p_b.y - p_a.y)); - return res; -} - -Vector2 Vector2::linear_interpolate(const Vector2 &p_b, real_t p_t) const { - Vector2 res = *this; - res.x += (p_t * (p_b.x - x)); - res.y += (p_t * (p_b.y - y)); - return res; -} Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const { Vector2 p0 = p_pre_a; Vector2 p1 = *this; @@ -167,45 +54,6 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c return out; } -Vector2 Vector2::slide(const Vector2 &p_vec) const { - return p_vec - *this * this->dot(p_vec); -} - -Vector2 Vector2::reflect(const Vector2 &p_vec) const { - return p_vec - *this * this->dot(p_vec) * 2.0; -} - -real_t Vector2::angle() const { - return atan2(y, x); -} - -void Vector2::set_rotation(real_t p_radians) { - - x = cosf(p_radians); - y = sinf(p_radians); -} - -Vector2 Vector2::abs() const { - - return Vector2(fabs(x), fabs(y)); -} - -Vector2 Vector2::rotated(real_t p_by) const { - Vector2 v; - v.set_rotation(angle() + p_by); - v *= length(); - return v; -} - -Vector2 Vector2::tangent() const { - - return Vector2(y, -x); -} - -Vector2 Vector2::floor() const { - return Vector2(::floor(x), ::floor(y)); -} - Vector2 Vector2::snapped(const Vector2 &p_by) const { return Vector2( p_by.x != 0 ? ::floor(x / p_by.x + 0.5) * p_by.x : x, diff --git a/src/core/Vector3.cpp b/src/core/Vector3.cpp index a15fb789..cf957920 100644 --- a/src/core/Vector3.cpp +++ b/src/core/Vector3.cpp @@ -4,118 +4,10 @@ #include -#include - #include "Basis.hpp" namespace godot { -Vector3::Vector3(real_t x, real_t y, real_t z) { - this->x = x; - this->y = y; - this->z = z; -} - -Vector3::Vector3() { - this->x = 0; - this->y = 0; - this->z = 0; -} - -const real_t &Vector3::operator[](int p_axis) const { - return coord[p_axis]; -} - -real_t &Vector3::operator[](int p_axis) { - return coord[p_axis]; -} - -Vector3 &Vector3::operator+=(const Vector3 &p_v) { - x += p_v.x; - y += p_v.y; - z += p_v.z; - return *this; -} - -Vector3 Vector3::operator+(const Vector3 &p_v) const { - Vector3 v = *this; - v += p_v; - return v; -} - -Vector3 &Vector3::operator-=(const Vector3 &p_v) { - x -= p_v.x; - y -= p_v.y; - z -= p_v.z; - return *this; -} - -Vector3 Vector3::operator-(const Vector3 &p_v) const { - Vector3 v = *this; - v -= p_v; - return v; -} - -Vector3 &Vector3::operator*=(const Vector3 &p_v) { - x *= p_v.x; - y *= p_v.y; - z *= p_v.z; - return *this; -} - -Vector3 Vector3::operator*(const Vector3 &p_v) const { - Vector3 v = *this; - v *= p_v; - return v; -} - -Vector3 &Vector3::operator/=(const Vector3 &p_v) { - x /= p_v.x; - y /= p_v.y; - z /= p_v.z; - return *this; -} - -Vector3 Vector3::operator/(const Vector3 &p_v) const { - Vector3 v = *this; - v /= p_v; - return v; -} - -Vector3 &Vector3::operator*=(real_t p_scalar) { - *this *= Vector3(p_scalar, p_scalar, p_scalar); - return *this; -} - -Vector3 Vector3::operator*(real_t p_scalar) const { - Vector3 v = *this; - v *= p_scalar; - return v; -} - -Vector3 &Vector3::operator/=(real_t p_scalar) { - *this /= Vector3(p_scalar, p_scalar, p_scalar); - return *this; -} - -Vector3 Vector3::operator/(real_t p_scalar) const { - Vector3 v = *this; - v /= p_scalar; - return v; -} - -Vector3 Vector3::operator-() const { - return Vector3(-x, -y, -z); -} - -bool Vector3::operator==(const Vector3 &p_v) const { - return (x == p_v.x && y == p_v.y && z == p_v.z); -} - -bool Vector3::operator!=(const Vector3 &p_v) const { - return (x != p_v.x || y != p_v.y || z != p_v.z); -} - bool Vector3::operator<(const Vector3 &p_v) const { if (x == p_v.x) { if (y == p_v.y) @@ -138,30 +30,6 @@ bool Vector3::operator<=(const Vector3 &p_v) const { } } -Vector3 Vector3::abs() const { - return Vector3(::fabs(x), ::fabs(y), ::fabs(z)); -} - -Vector3 Vector3::ceil() const { - return Vector3(::ceil(x), ::ceil(y), ::ceil(z)); -} - -Vector3 Vector3::cross(const Vector3 &b) const { - Vector3 ret( - (y * b.z) - (z * b.y), - (z * b.x) - (x * b.z), - (x * b.y) - (y * b.x)); - - return ret; -} - -Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const { - return Vector3( - x + (p_t * (p_b.x - x)), - y + (p_t * (p_b.y - y)), - z + (p_t * (p_b.z - z))); -} - Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const { Vector3 p0 = pre_a; Vector3 p1 = *this; @@ -180,54 +48,6 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const return out; } -Vector3 Vector3::bounce(const Vector3 &p_normal) const { - return -reflect(p_normal); -} - -real_t Vector3::length() const { - real_t x2 = x * x; - real_t y2 = y * y; - real_t z2 = z * z; - - return ::sqrt(x2 + y2 + z2); -} - -real_t Vector3::length_squared() const { - real_t x2 = x * x; - real_t y2 = y * y; - real_t z2 = z * z; - - return x2 + y2 + z2; -} - -real_t Vector3::distance_squared_to(const Vector3 &b) const { - return (b - *this).length_squared(); -} - -real_t Vector3::distance_to(const Vector3 &b) const { - return (b - *this).length(); -} - -real_t Vector3::dot(const Vector3 &b) const { - return x * b.x + y * b.y + z * b.z; -} - -real_t Vector3::angle_to(const Vector3 &b) const { - return std::atan2(cross(b).length(), dot(b)); -} - -Vector3 Vector3::floor() const { - return Vector3(::floor(x), ::floor(y), ::floor(z)); -} - -Vector3 Vector3::inverse() const { - return Vector3(1.0 / x, 1.0 / y, 1.0 / z); -} - -bool Vector3::is_normalized() const { - return std::abs(length_squared() - 1.0) < 0.00001; -} - Basis Vector3::outer(const Vector3 &b) const { Vector3 row0(x * b.x, x * b.y, x * b.z); Vector3 row1(y * b.x, y * b.y, y * b.z); @@ -243,41 +63,10 @@ int Vector3::min_axis() const { return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2); } -void Vector3::normalize() { - real_t l = length(); - if (l == 0) { - x = y = z = 0; - } else { - x /= l; - y /= l; - z /= l; - } -} - -Vector3 Vector3::normalized() const { - Vector3 v = *this; - v.normalize(); - return v; -} - -Vector3 Vector3::reflect(const Vector3 &by) const { - return by - *this * this->dot(by) * 2.0; -} - -Vector3 Vector3::rotated(const Vector3 &axis, const real_t phi) const { - Vector3 v = *this; - v.rotate(axis, phi); - return v; -} - void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) { *this = Basis(p_axis, p_phi).xform(*this); } -Vector3 Vector3::slide(const Vector3 &by) const { - return by - *this * this->dot(by); -} - // this is ugly as well, but hey, I'm a simple man #define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val) @@ -289,12 +78,6 @@ void Vector3::snap(real_t p_val) { #undef _ugly_stepify -Vector3 Vector3::snapped(const float by) { - Vector3 v = *this; - v.snap(by); - return v; -} - Vector3::operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z); }