diff --git a/include/godot_cpp/core/math.hpp b/include/godot_cpp/core/math.hpp index 6bc2344c..78f90ca6 100644 --- a/include/godot_cpp/core/math.hpp +++ b/include/godot_cpp/core/math.hpp @@ -537,6 +537,27 @@ inline bool is_zero_approx(double s) { return abs(s) < CMP_EPSILON; } +inline float absf(float g) { + union { + float f; + uint32_t i; + } u; + + u.f = g; + u.i &= 2147483647u; + return u.f; +} + +inline double absd(double g) { + union { + double d; + uint64_t i; + } u; + u.d = g; + u.i &= (uint64_t)9223372036854775807ull; + return u.d; +} + inline double smoothstep(double p_from, double p_to, double p_weight) { if (is_equal_approx(static_cast(p_from), static_cast(p_to))) { return p_from; diff --git a/include/godot_cpp/variant/basis.hpp b/include/godot_cpp/variant/basis.hpp index 7e11f399..05881f84 100644 --- a/include/godot_cpp/variant/basis.hpp +++ b/include/godot_cpp/variant/basis.hpp @@ -49,10 +49,10 @@ public: Vector3(0, 0, 1) }; - inline const Vector3 &operator[](int axis) const { + _FORCE_INLINE_ const Vector3 &operator[](int axis) const { return rows[axis]; } - inline Vector3 &operator[](int axis) { + _FORCE_INLINE_ Vector3 &operator[](int axis) { return rows[axis]; } @@ -62,67 +62,53 @@ public: Basis inverse() const; Basis transposed() const; - inline real_t determinant() const; + _FORCE_INLINE_ real_t determinant() const; + + enum EulerOrder { + EULER_ORDER_XYZ, + EULER_ORDER_XZY, + EULER_ORDER_YXZ, + EULER_ORDER_YZX, + EULER_ORDER_ZXY, + EULER_ORDER_ZYX + }; void from_z(const Vector3 &p_z); - inline Vector3 get_axis(int p_axis) const { - // get actual basis axis (rows is transposed for performance) - return Vector3(rows[0][p_axis], rows[1][p_axis], rows[2][p_axis]); - } - inline void set_axis(int p_axis, const Vector3 &p_value) { - // get actual basis axis (rows is transposed for performance) - rows[0][p_axis] = p_value.x; - rows[1][p_axis] = p_value.y; - rows[2][p_axis] = p_value.z; - } + void rotate(const Vector3 &p_axis, real_t p_angle); + Basis rotated(const Vector3 &p_axis, real_t p_angle) const; - void rotate(const Vector3 &p_axis, real_t p_phi); - Basis rotated(const Vector3 &p_axis, real_t p_phi) const; + void rotate_local(const Vector3 &p_axis, real_t p_angle); + Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const; - void rotate_local(const Vector3 &p_axis, real_t p_phi); - Basis rotated_local(const Vector3 &p_axis, real_t p_phi) const; + void rotate(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); + Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) const; - void rotate(const Vector3 &p_euler); - Basis rotated(const Vector3 &p_euler) const; + void rotate(const Quaternion &p_quaternion); + Basis rotated(const Quaternion &p_quaternion) const; - void rotate(const Quaternion &p_quat); - Basis rotated(const Quaternion &p_quat) const; - - Vector3 get_rotation_euler() const; + Vector3 get_euler_normalized(EulerOrder p_order = EULER_ORDER_YXZ) const; void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const; void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const; Quaternion get_rotation_quaternion() const; - Vector3 get_rotation() const { return get_rotation_euler(); }; + + void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction); Vector3 rotref_posscale_decomposition(Basis &rotref) const; - Vector3 get_euler_xyz() const; - void set_euler_xyz(const Vector3 &p_euler); - - Vector3 get_euler_xzy() const; - void set_euler_xzy(const Vector3 &p_euler); - - Vector3 get_euler_yzx() const; - void set_euler_yzx(const Vector3 &p_euler); - - Vector3 get_euler_yxz() const; - void set_euler_yxz(const Vector3 &p_euler); - - Vector3 get_euler_zxy() const; - void set_euler_zxy(const Vector3 &p_euler); - - Vector3 get_euler_zyx() const; - void set_euler_zyx(const Vector3 &p_euler); + Vector3 get_euler(EulerOrder p_order = EULER_ORDER_YXZ) const; + void set_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ); + static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EULER_ORDER_YXZ) { + Basis b; + b.set_euler(p_euler, p_order); + return b; + } Quaternion get_quaternion() const; - void set_quaternion(const Quaternion &p_quat); - - Vector3 get_euler() const { return get_euler_yxz(); } - void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); } + void set_quaternion(const Quaternion &p_quaternion); void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const; - void set_axis_angle(const Vector3 &p_axis, real_t p_phi); + void set_axis_angle(const Vector3 &p_axis, real_t p_angle); void scale(const Vector3 &p_scale); Basis scaled(const Vector3 &p_scale) const; @@ -130,6 +116,9 @@ public: void scale_local(const Vector3 &p_scale); Basis scaled_local(const Vector3 &p_scale) const; + void scale_orthogonal(const Vector3 &p_scale); + Basis scaled_orthogonal(const Vector3 &p_scale) const; + void make_scale_uniform(); float get_uniform_scale() const; @@ -137,18 +126,18 @@ public: Vector3 get_scale_abs() const; Vector3 get_scale_local() const; - void set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale); - void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale); - void set_quaternion_scale(const Quaternion &p_quat, const Vector3 &p_scale); + void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale); + void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EULER_ORDER_YXZ); + void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale); // transposed dot products - inline real_t tdotx(const Vector3 &v) const { + _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const { return rows[0][0] * v[0] + rows[1][0] * v[1] + rows[2][0] * v[2]; } - inline real_t tdoty(const Vector3 &v) const { + _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const { return rows[0][1] * v[0] + rows[1][1] * v[1] + rows[2][1] * v[2]; } - inline real_t tdotz(const Vector3 &v) const { + _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const { return rows[0][2] * v[0] + rows[1][2] * v[1] + rows[2][2] * v[2]; } @@ -157,26 +146,22 @@ public: bool operator==(const Basis &p_matrix) const; bool operator!=(const Basis &p_matrix) const; - inline Vector3 xform(const Vector3 &p_vector) const; - inline Vector3 xform_inv(const Vector3 &p_vector) const; - inline void operator*=(const Basis &p_matrix); - inline Basis operator*(const Basis &p_matrix) const; - inline void operator+=(const Basis &p_matrix); - inline Basis operator+(const Basis &p_matrix) const; - inline void operator-=(const Basis &p_matrix); - inline Basis operator-(const Basis &p_matrix) const; - inline void operator*=(real_t p_val); - inline Basis operator*(real_t p_val) const; - - int get_orthogonal_index() const; - void set_orthogonal_index(int p_index); - - void set_diagonal(const Vector3 &p_diag); + _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const; + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const; + _FORCE_INLINE_ void operator*=(const Basis &p_matrix); + _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const; + _FORCE_INLINE_ void operator+=(const Basis &p_matrix); + _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const; + _FORCE_INLINE_ void operator-=(const Basis &p_matrix); + _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const; + _FORCE_INLINE_ void operator*=(const real_t p_val); + _FORCE_INLINE_ Basis operator*(const real_t p_val) const; bool is_orthogonal() const; bool is_diagonal() const; bool is_rotation() const; + Basis lerp(const Basis &p_to, const real_t &p_weight) const; Basis slerp(const Basis &p_to, const real_t &p_weight) const; void rotate_sh(real_t *p_values); @@ -184,7 +169,7 @@ public: /* create / set */ - inline void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { + _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { rows[0][0] = xx; rows[0][1] = xy; rows[0][2] = xz; @@ -195,35 +180,35 @@ public: rows[2][1] = zy; rows[2][2] = zz; } - inline void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { - set_axis(0, p_x); - set_axis(1, p_y); - set_axis(2, p_z); - } - inline Vector3 get_column(int i) const { - return Vector3(rows[0][i], rows[1][i], rows[2][i]); + _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { + set_column(0, p_x); + set_column(1, p_y); + set_column(2, p_z); } - inline Vector3 get_row(int i) const { - return Vector3(rows[i][0], rows[i][1], rows[i][2]); + _FORCE_INLINE_ Vector3 get_column(int p_index) const { + // Get actual basis axis column (we store transposed as rows for performance). + return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]); } - inline Vector3 get_main_diagonal() const { + + _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) { + // Set actual basis axis column (we store transposed as rows for performance). + rows[0][p_index] = p_value.x; + rows[1][p_index] = p_value.y; + rows[2][p_index] = p_value.z; + } + + _FORCE_INLINE_ Vector3 get_main_diagonal() const { return Vector3(rows[0][0], rows[1][1], rows[2][2]); } - inline void set_row(int i, const Vector3 &p_row) { - rows[i][0] = p_row.x; - rows[i][1] = p_row.y; - rows[i][2] = p_row.z; - } - - inline void set_zero() { + _FORCE_INLINE_ void set_zero() { rows[0].zero(); rows[1].zero(); rows[2].zero(); } - inline Basis transpose_xform(const Basis &m) const { + _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const { return Basis( rows[0].x * m[0].x + rows[1].x * m[1].x + rows[2].x * m[2].x, rows[0].x * m[0].y + rows[1].x * m[1].y + rows[2].x * m[2].y, @@ -242,6 +227,9 @@ public: void orthonormalize(); Basis orthonormalized() const; + void orthogonalize(); + Basis orthogonalized() const; + #ifdef MATH_CHECKS bool is_symmetric() const; #endif @@ -249,69 +237,71 @@ public: operator Quaternion() const { return get_quaternion(); } - Basis(const Quaternion &p_quat) { set_quaternion(p_quat); }; - Basis(const Quaternion &p_quat, const Vector3 &p_scale) { set_quaternion_scale(p_quat, p_scale); } + static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)); - Basis(const Vector3 &p_euler) { set_euler(p_euler); } - Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); } + Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }; + Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); } - Basis(const Vector3 &p_axis, real_t p_phi) { set_axis_angle(p_axis, p_phi); } - Basis(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_phi, p_scale); } + Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); } + Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); } + static Basis from_scale(const Vector3 &p_scale); - inline Basis(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) { - set_axis(0, p_x); - set_axis(1, p_y); - set_axis(2, p_z); + _FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) { + set_columns(p_x_axis, p_y_axis, p_z_axis); } - inline Basis() {} + _FORCE_INLINE_ Basis() {} + +private: + // Helper method. + void _set_diagonal(const Vector3 &p_diag); }; -inline void Basis::operator*=(const Basis &p_matrix) { +_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) { set( p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); } -inline Basis Basis::operator*(const Basis &p_matrix) const { +_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const { return Basis( p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]), p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]), p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2])); } -inline void Basis::operator+=(const Basis &p_matrix) { +_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) { rows[0] += p_matrix.rows[0]; rows[1] += p_matrix.rows[1]; rows[2] += p_matrix.rows[2]; } -inline Basis Basis::operator+(const Basis &p_matrix) const { +_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const { Basis ret(*this); ret += p_matrix; return ret; } -inline void Basis::operator-=(const Basis &p_matrix) { +_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) { rows[0] -= p_matrix.rows[0]; rows[1] -= p_matrix.rows[1]; rows[2] -= p_matrix.rows[2]; } -inline Basis Basis::operator-(const Basis &p_matrix) const { +_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const { Basis ret(*this); ret -= p_matrix; return ret; } -inline void Basis::operator*=(real_t p_val) { +_FORCE_INLINE_ void Basis::operator*=(const real_t p_val) { rows[0] *= p_val; rows[1] *= p_val; rows[2] *= p_val; } -inline Basis Basis::operator*(real_t p_val) const { +_FORCE_INLINE_ Basis Basis::operator*(const real_t p_val) const { Basis ret(*this); ret *= p_val; return ret; @@ -333,8 +323,8 @@ Vector3 Basis::xform_inv(const Vector3 &p_vector) const { real_t Basis::determinant() const { return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) - - rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) + - rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]); + rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) + + rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]); } } // namespace godot diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp index b17afc57..815b1166 100644 --- a/include/godot_cpp/variant/quaternion.hpp +++ b/include/godot_cpp/variant/quaternion.hpp @@ -28,8 +28,8 @@ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ -#ifndef GODOT_QUAT_HPP -#define GODOT_QUAT_HPP +#ifndef GODOT_QUATERNION_HPP +#define GODOT_QUATERNION_HPP #include #include @@ -52,20 +52,23 @@ public: real_t components[4] = { 0, 0, 0, 1.0 }; }; - inline real_t &operator[](int idx) { + _FORCE_INLINE_ real_t &operator[](int idx) { return components[idx]; } - inline const real_t &operator[](int idx) const { + _FORCE_INLINE_ const real_t &operator[](int idx) const { return components[idx]; } - inline real_t length_squared() const; - bool is_equal_approx(const Quaternion &p_quat) const; + _FORCE_INLINE_ real_t length_squared() const; + bool is_equal_approx(const Quaternion &p_quaternion) const; real_t length() const; void normalize(); Quaternion normalized() const; bool is_normalized() const; Quaternion inverse() const; - inline real_t dot(const Quaternion &p_q) const; + Quaternion log() const; + Quaternion exp() const; + _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; + real_t angle_to(const Quaternion &p_to) const; Vector3 get_euler_xyz() const; Vector3 get_euler_yxz() const; @@ -73,9 +76,13 @@ public: Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; - Quaternion cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; + Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; - inline void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { + Vector3 get_axis() const; + real_t get_angle() const; + + _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { r_angle = 2 * Math::acos(w); real_t r = ((real_t)1) / Math::sqrt(1 - w * w); r_axis.x = x * r; @@ -86,44 +93,37 @@ public: void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; - Quaternion operator*(const Vector3 &v) const { - return Quaternion(w * v.x + y * v.z - z * v.y, - w * v.y + z * v.x - x * v.z, - w * v.z + x * v.y - y * v.x, - -x * v.x - y * v.y - z * v.z); - } - - inline Vector3 xform(const Vector3 &v) const { + _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), v); + ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); #endif Vector3 u(x, y, z); Vector3 uv = u.cross(v); return v + ((uv * w) + u.cross(uv)) * ((real_t)2); } - inline Vector3 xform_inv(const Vector3 &v) const { + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { return inverse().xform(v); } - inline void operator+=(const Quaternion &p_q); - inline void operator-=(const Quaternion &p_q); - inline void operator*=(const real_t &s); - inline void operator/=(const real_t &s); - inline Quaternion operator+(const Quaternion &q2) const; - inline Quaternion operator-(const Quaternion &q2) const; - inline Quaternion operator-() const; - inline Quaternion operator*(const real_t &s) const; - inline Quaternion operator/(const real_t &s) const; + _FORCE_INLINE_ void operator+=(const Quaternion &p_q); + _FORCE_INLINE_ void operator-=(const Quaternion &p_q); + _FORCE_INLINE_ void operator*=(const real_t &s); + _FORCE_INLINE_ void operator/=(const real_t &s); + _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; + _FORCE_INLINE_ Quaternion operator-() const; + _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; + _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; - inline bool operator==(const Quaternion &p_quat) const; - inline bool operator!=(const Quaternion &p_quat) const; + _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; + _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; operator String() const; - inline Quaternion() {} + _FORCE_INLINE_ Quaternion() {} - inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : + _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) : x(p_x), y(p_y), z(p_z), @@ -141,12 +141,11 @@ public: w(p_q.w) { } - Quaternion &operator=(const Quaternion &p_q) { + void operator=(const Quaternion &p_q) { x = p_q.x; y = p_q.y; z = p_q.z; w = p_q.w; - return *this; } Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc @@ -154,19 +153,19 @@ public: Vector3 c = v0.cross(v1); real_t d = v0.dot(v1); - if (d < (real_t)-1.0 + CMP_EPSILON) { - x = (real_t)0.0; - y = (real_t)1.0; - z = (real_t)0.0; - w = (real_t)0.0; + if (d < -1.0f + (real_t)CMP_EPSILON) { + x = 0; + y = 1; + z = 0; + w = 0; } else { - real_t s = Math::sqrt(((real_t)1.0 + d) * (real_t)2.0); - real_t rs = (real_t)1.0 / s; + real_t s = Math::sqrt((1.0f + d) * 2.0f); + real_t rs = 1.0f / s; x = c.x * rs; y = c.y * rs; z = c.z * rs; - w = s * (real_t)0.5; + w = s * 0.5f; } } }; @@ -201,7 +200,7 @@ void Quaternion::operator*=(const real_t &s) { } void Quaternion::operator/=(const real_t &s) { - *this *= (real_t)1.0 / s; + *this *= 1.0f / s; } Quaternion Quaternion::operator+(const Quaternion &q2) const { @@ -224,21 +223,21 @@ Quaternion Quaternion::operator*(const real_t &s) const { } Quaternion Quaternion::operator/(const real_t &s) const { - return *this * ((real_t)1.0 / s); + return *this * (1.0f / s); } -bool Quaternion::operator==(const Quaternion &p_quat) const { - return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w; +bool Quaternion::operator==(const Quaternion &p_quaternion) const { + return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w; } -bool Quaternion::operator!=(const Quaternion &p_quat) const { - return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w; +bool Quaternion::operator!=(const Quaternion &p_quaternion) const { + return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; } -inline Quaternion operator*(const real_t &p_real, const Quaternion &p_quat) { - return p_quat * p_real; +_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { + return p_quaternion * p_real; } } // namespace godot -#endif // GODOT_QUAT_HPP +#endif // GODOT_QUATERNION_HPP diff --git a/include/godot_cpp/variant/transform3d.hpp b/include/godot_cpp/variant/transform3d.hpp index 01d78878..c6220f3a 100644 --- a/include/godot_cpp/variant/transform3d.hpp +++ b/include/godot_cpp/variant/transform3d.hpp @@ -54,11 +54,11 @@ public: void affine_invert(); Transform3D affine_inverse() const; - Transform3D rotated(const Vector3 &p_axis, real_t p_phi) const; + Transform3D rotated(const Vector3 &p_axis, real_t p_angle) const; Transform3D rotated_local(const Vector3 &p_axis, real_t p_angle) const; - void rotate(const Vector3 &p_axis, real_t p_phi); - void rotate_basis(const Vector3 &p_axis, real_t p_phi); + void rotate(const Vector3 &p_axis, real_t p_angle); + void rotate_basis(const Vector3 &p_axis, real_t p_angle); void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)); Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0)) const; @@ -67,8 +67,8 @@ public: Transform3D scaled(const Vector3 &p_scale) const; Transform3D scaled_local(const Vector3 &p_scale) const; void scale_basis(const Vector3 &p_scale); - void translate(real_t p_tx, real_t p_ty, real_t p_tz); - void translate(const Vector3 &p_translation); + void translate_local(real_t p_tx, real_t p_ty, real_t p_tz); + void translate_local(const Vector3 &p_translation); Transform3D translated(const Vector3 &p_translation) const; Transform3D translated_local(const Vector3 &p_translation) const; @@ -80,29 +80,41 @@ public: void orthonormalize(); Transform3D orthonormalized() const; + void orthogonalize(); + Transform3D orthogonalized() const; bool is_equal_approx(const Transform3D &p_transform) const; bool operator==(const Transform3D &p_transform) const; bool operator!=(const Transform3D &p_transform) const; - inline Vector3 xform(const Vector3 &p_vector) const; - inline Vector3 xform_inv(const Vector3 &p_vector) const; + _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const; + _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const; + _FORCE_INLINE_ PackedVector3Array xform(const PackedVector3Array &p_array) const; - inline Plane xform(const Plane &p_plane) const; - inline Plane xform_inv(const Plane &p_plane) const; + // NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results. + // They use the transpose. + // For safe inverse transforms, xform by the affine_inverse. + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const; + _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const; + _FORCE_INLINE_ PackedVector3Array xform_inv(const PackedVector3Array &p_array) const; - inline AABB xform(const AABB &p_aabb) const; - inline AABB xform_inv(const AABB &p_aabb) const; + // Safe with non-uniform scaling (uses affine_inverse). + _FORCE_INLINE_ Plane xform(const Plane &p_plane) const; + _FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const; - inline PackedVector3Array xform(const PackedVector3Array &p_array) const; - inline PackedVector3Array xform_inv(const PackedVector3Array &p_array) const; + // These fast versions use precomputed affine inverse, and should be used in bottleneck areas where + // multiple planes are to be transformed. + _FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const; + static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose); void operator*=(const Transform3D &p_transform); Transform3D operator*(const Transform3D &p_transform) const; + void operator*=(const real_t p_val); + Transform3D operator*(const real_t p_val) const; Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const; - inline Transform3D inverse_xform(const Transform3D &t) const { + _FORCE_INLINE_ Transform3D inverse_xform(const Transform3D &t) const { Vector3 v = t.origin - origin; return Transform3D(basis.transpose_xform(t.basis), basis.xform(v)); @@ -123,14 +135,14 @@ public: Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz); }; -inline Vector3 Transform3D::xform(const Vector3 &p_vector) const { +_FORCE_INLINE_ Vector3 Transform3D::xform(const Vector3 &p_vector) const { return Vector3( basis[0].dot(p_vector) + origin.x, basis[1].dot(p_vector) + origin.y, basis[2].dot(p_vector) + origin.z); } -inline Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { +_FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { Vector3 v = p_vector - origin; return Vector3( @@ -139,34 +151,24 @@ inline Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const { (basis.rows[0][2] * v.x) + (basis.rows[1][2] * v.y) + (basis.rows[2][2] * v.z)); } -inline Plane Transform3D::xform(const Plane &p_plane) const { - Vector3 point = p_plane.normal * p_plane.d; - Vector3 point_dir = point + p_plane.normal; - point = xform(point); - point_dir = xform(point_dir); - - Vector3 normal = point_dir - point; - normal.normalize(); - real_t d = normal.dot(point); - - return Plane(normal, d); +// Neither the plane regular xform or xform_inv are particularly efficient, +// as they do a basis inverse. For xforming a large number +// of planes it is better to pre-calculate the inverse transpose basis once +// and reuse it for each plane, by using the 'fast' version of the functions. +_FORCE_INLINE_ Plane Transform3D::xform(const Plane &p_plane) const { + Basis b = basis.inverse(); + b.transpose(); + return xform_fast(p_plane, b); } -inline Plane Transform3D::xform_inv(const Plane &p_plane) const { - Vector3 point = p_plane.normal * p_plane.d; - Vector3 point_dir = point + p_plane.normal; - point = xform_inv(point); - point_dir = xform_inv(point_dir); - - Vector3 normal = point_dir - point; - normal.normalize(); - real_t d = normal.dot(point); - - return Plane(normal, d); +_FORCE_INLINE_ Plane Transform3D::xform_inv(const Plane &p_plane) const { + Transform3D inv = affine_inverse(); + Basis basis_transpose = basis.transposed(); + return xform_inv_fast(p_plane, inv, basis_transpose); } -inline AABB Transform3D::xform(const AABB &p_aabb) const { - /* http://dev.theomader.com/transform-bounding-boxes/ */ +_FORCE_INLINE_ AABB Transform3D::xform(const AABB &p_aabb) const { + /* https://dev.theomader.com/transform-bounding-boxes/ */ Vector3 min = p_aabb.position; Vector3 max = p_aabb.position + p_aabb.size; Vector3 tmin, tmax; @@ -190,7 +192,7 @@ inline AABB Transform3D::xform(const AABB &p_aabb) const { return r_aabb; } -inline AABB Transform3D::xform_inv(const AABB &p_aabb) const { +_FORCE_INLINE_ AABB Transform3D::xform_inv(const AABB &p_aabb) const { /* define vertices */ Vector3 vertices[8] = { Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z), @@ -218,8 +220,11 @@ PackedVector3Array Transform3D::xform(const PackedVector3Array &p_array) const { PackedVector3Array array; array.resize(p_array.size()); + const Vector3 *r = p_array.ptr(); + Vector3 *w = array.ptrw(); + for (int i = 0; i < p_array.size(); ++i) { - array[i] = xform(p_array[i]); + w[i] = xform(r[i]); } return array; } @@ -228,12 +233,48 @@ PackedVector3Array Transform3D::xform_inv(const PackedVector3Array &p_array) con PackedVector3Array array; array.resize(p_array.size()); + const Vector3 *r = p_array.ptr(); + Vector3 *w = array.ptrw(); + for (int i = 0; i < p_array.size(); ++i) { - array[i] = xform_inv(p_array[i]); + w[i] = xform_inv(r[i]); } return array; } +_FORCE_INLINE_ Plane Transform3D::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const { + // Transform a single point on the plane. + Vector3 point = p_plane.normal * p_plane.d; + point = xform(point); + + // Use inverse transpose for correct normals with non-uniform scaling. + Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal); + normal.normalize(); + + real_t d = normal.dot(point); + return Plane(normal, d); +} + +_FORCE_INLINE_ Plane Transform3D::xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose) { + // Transform a single point on the plane. + Vector3 point = p_plane.normal * p_plane.d; + point = p_inverse.xform(point); + + // Note that instead of precalculating the transpose, an alternative + // would be to use the transpose for the basis transform. + // However that would be less SIMD friendly (requiring a swizzle). + // So the cost is one extra precalced value in the calling code. + // This is probably worth it, as this could be used in bottleneck areas. And + // where it is not a bottleneck, the non-fast method is fine. + + // Use transpose for correct normals with non-uniform scaling. + Vector3 normal = p_basis_transpose.xform(p_plane.normal); + normal.normalize(); + + real_t d = normal.dot(point); + return Plane(normal, d); +} + } // namespace godot -#endif // GODOT_TRANSFORM_HPP +#endif // GODOT_TRANSFORM3D_HPP diff --git a/src/variant/basis.cpp b/src/variant/basis.cpp index 0385214e..27212c02 100644 --- a/src/variant/basis.cpp +++ b/src/variant/basis.cpp @@ -38,16 +38,16 @@ namespace godot { void Basis::from_z(const Vector3 &p_z) { - if (Math::abs(p_z.z) > Math_SQRT12) { + if (Math::abs(p_z.z) > (real_t)Math_SQRT12) { // choose p in y-z plane real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2]; - real_t k = 1.0 / Math::sqrt(a); + real_t k = 1.0f / Math::sqrt(a); rows[0] = Vector3(0, -p_z[2] * k, p_z[1] * k); rows[1] = Vector3(a * k, -p_z[0] * rows[0][2], p_z[0] * rows[0][1]); } else { // choose p in x-y plane real_t a = p_z.x * p_z.x + p_z.y * p_z.y; - real_t k = 1.0 / Math::sqrt(a); + real_t k = 1.0f / Math::sqrt(a); rows[0] = Vector3(-p_z.y * k, p_z.x * k, 0); rows[1] = Vector3(-p_z.z * rows[0].y, p_z.z * rows[0].x, a * k); } @@ -59,12 +59,12 @@ void Basis::invert() { cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = rows[0][0] * co[0] + - rows[0][1] * co[1] + - rows[0][2] * co[2]; + rows[0][1] * co[1] + + rows[0][2] * co[2]; #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif - real_t s = 1.0 / det; + real_t s = 1.0f / det; set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, @@ -74,9 +74,9 @@ void Basis::invert() { void Basis::orthonormalize() { // Gram-Schmidt Process - Vector3 x = get_axis(0); - Vector3 y = get_axis(1); - Vector3 z = get_axis(2); + Vector3 x = get_column(0); + Vector3 y = get_column(1); + Vector3 z = get_column(2); x.normalize(); y = (y - x * (x.dot(y))); @@ -84,9 +84,9 @@ void Basis::orthonormalize() { z = (z - x * (x.dot(z)) - y * (y.dot(z))); z.normalize(); - set_axis(0, x); - set_axis(1, y); - set_axis(2, z); + set_column(0, x); + set_column(1, y); + set_column(2, z); } Basis Basis::orthonormalized() const { @@ -95,6 +95,18 @@ Basis Basis::orthonormalized() const { return c; } +void Basis::orthogonalize() { + Vector3 scl = get_scale(); + orthonormalize(); + scale_local(scl); +} + +Basis Basis::orthogonalized() const { + Basis c = *this; + c.orthogonalize(); + return c; +} + bool Basis::is_orthogonal() const { Basis identity; Basis m = (*this) * transposed(); @@ -132,7 +144,7 @@ bool Basis::is_symmetric() const { Basis Basis::diagonalize() { // NOTE: only implemented for symmetric matrices -// with the Jacobi iterative method method +// with the Jacobi iterative method #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_symmetric(), Basis()); #endif @@ -142,7 +154,7 @@ Basis Basis::diagonalize() { int ite = 0; Basis acc_rot; - while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) { + while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) { real_t el01_2 = rows[0][1] * rows[0][1]; real_t el02_2 = rows[0][2] * rows[0][2]; real_t el12_2 = rows[1][2] * rows[1][2]; @@ -171,7 +183,7 @@ Basis Basis::diagonalize() { if (Math::is_equal_approx(rows[j][j], rows[i][i])) { angle = Math_PI / 4; } else { - angle = 0.5 * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); + angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i])); } // Compute the rotation matrix @@ -208,6 +220,10 @@ Basis Basis::transposed() const { return tr; } +Basis Basis::from_scale(const Vector3 &p_scale) { + return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z); +} + // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3 &p_scale) { @@ -234,12 +250,30 @@ void Basis::scale_local(const Vector3 &p_scale) { *this = scaled_local(p_scale); } +void Basis::scale_orthogonal(const Vector3 &p_scale) { + *this = scaled_orthogonal(p_scale); +} + +Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const { + Basis m = *this; + Vector3 s = Vector3(-1, -1, -1) + p_scale; + Vector3 dots; + Basis b; + for (int i = 0; i < 3; i++) { + for (int j = 0; j < 3; j++) { + dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j))); + } + } + m.scale_local(Vector3(1, 1, 1) + dots); + return m; +} + float Basis::get_uniform_scale() const { - return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0; + return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; } void Basis::make_scale_uniform() { - float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0; + float l = (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f; for (int i = 0; i < 3; i++) { rows[i].normalize(); rows[i] *= l; @@ -247,10 +281,7 @@ void Basis::make_scale_uniform() { } Basis Basis::scaled_local(const Vector3 &p_scale) const { - Basis b; - b.set_diagonal(p_scale); - - return (*this) * b; + return (*this) * Basis::from_scale(p_scale); } Vector3 Basis::get_scale_abs() const { @@ -261,7 +292,7 @@ Vector3 Basis::get_scale_abs() const { } Vector3 Basis::get_scale_local() const { - real_t det_sign = Math::sign(determinant()); + real_t det_sign = SIGN(determinant()); return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length()); } @@ -287,11 +318,8 @@ Vector3 Basis::get_scale() const { // matrix rows. // // The rotation part of this decomposition is returned by get_rotation* functions. - real_t det_sign = Math::sign(determinant()); - return det_sign * Vector3( - Vector3(rows[0][0], rows[1][0], rows[2][0]).length(), - Vector3(rows[0][1], rows[1][1], rows[2][1]).length(), - Vector3(rows[0][2], rows[1][2], rows[2][2]).length()); + real_t det_sign = SIGN(determinant()); + return det_sign * get_scale_abs(); } // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S. @@ -317,44 +345,44 @@ Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const { // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // -// The main use of Basis is as Transform3D.basis, which is used a the transformation matrix +// The main use of Basis is as Transform.basis, which is used by the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). -Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const { - return Basis(p_axis, p_phi) * (*this); +Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const { + return Basis(p_axis, p_angle) * (*this); } -void Basis::rotate(const Vector3 &p_axis, real_t p_phi) { - *this = rotated(p_axis, p_phi); +void Basis::rotate(const Vector3 &p_axis, real_t p_angle) { + *this = rotated(p_axis, p_angle); } -void Basis::rotate_local(const Vector3 &p_axis, real_t p_phi) { +void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) { // performs a rotation in object-local coordinate system: // M -> (M.R.Minv).M = M.R. - *this = rotated_local(p_axis, p_phi); + *this = rotated_local(p_axis, p_angle); } -Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_phi) const { - return (*this) * Basis(p_axis, p_phi); +Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const { + return (*this) * Basis(p_axis, p_angle); } -Basis Basis::rotated(const Vector3 &p_euler) const { - return Basis(p_euler) * (*this); +Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const { + return Basis::from_euler(p_euler, p_order) * (*this); } -void Basis::rotate(const Vector3 &p_euler) { - *this = rotated(p_euler); +void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) { + *this = rotated(p_euler, p_order); } -Basis Basis::rotated(const Quaternion &p_quat) const { - return Basis(p_quat) * (*this); +Basis Basis::rotated(const Quaternion &p_quaternion) const { + return Basis(p_quaternion) * (*this); } -void Basis::rotate(const Quaternion &p_quat) { - *this = rotated(p_quat); +void Basis::rotate(const Quaternion &p_quaternion) { + *this = rotated(p_quaternion); } -Vector3 Basis::get_rotation_euler() const { +Vector3 Basis::get_euler_normalized(EulerOrder p_order) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. @@ -365,7 +393,7 @@ Vector3 Basis::get_rotation_euler() const { m.scale(Vector3(-1, -1, -1)); } - return m.get_euler(); + return m.get_euler(p_order); } Quaternion Basis::get_rotation_quaternion() const { @@ -382,6 +410,18 @@ Quaternion Basis::get_rotation_quaternion() const { return m.get_quaternion(); } +void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) { + // Takes two vectors and rotates the basis from the first vector to the second vector. + // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724 + const Vector3 axis = p_start_direction.cross(p_end_direction).normalized(); + if (axis.length_squared() != 0) { + real_t dot = p_start_direction.dot(p_end_direction); + dot = CLAMP(dot, -1.0f, 1.0f); + const real_t angle_rads = Math::acos(dot); + set_axis_angle(axis, angle_rads); + } +} + void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). @@ -412,328 +452,240 @@ void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) cons p_angle = -p_angle; } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last -// (following the convention they are commonly defined in the literature). -// -// The current implementation uses XYZ convention (Z is the first rotation), -// so euler.z is the angle of the (first) rotation around Z axis and so on, -// -// And thus, assuming the matrix is a rotation matrix, this function returns -// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates -// around the z-axis by a and so on. -Vector3 Basis::get_euler_xyz() const { - // Euler angles in XYZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz -cy*sz sy - // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx - // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy +Vector3 Basis::get_euler(EulerOrder p_order) const { + switch (p_order) { + case EULER_ORDER_XYZ: { + // Euler angles in XYZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz -cy*sz sy + // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx + // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy - Vector3 euler; - real_t sy = rows[0][2]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - // is this a pure Y rotation? - if (rows[1][0] == 0.0 && rows[0][1] == 0.0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { - // return the simplest form (human friendlier in editor and scripts) + Vector3 euler; + real_t sy = rows[0][2]; + if (sy < (1.0f - (real_t)CMP_EPSILON)) { + if (sy > -(1.0f - (real_t)CMP_EPSILON)) { + // is this a pure Y rotation? + if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = 0; + euler.y = atan2(rows[0][2], rows[0][0]); + euler.z = 0; + } else { + euler.x = Math::atan2(-rows[1][2], rows[2][2]); + euler.y = Math::asin(sy); + euler.z = Math::atan2(-rows[0][1], rows[0][0]); + } + } else { + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = -Math_PI / 2.0f; + euler.z = 0.0f; + } + } else { + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = Math_PI / 2.0f; + euler.z = 0.0f; + } + return euler; + } break; + case EULER_ORDER_XZY: { + // Euler angles in XZY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy -sz cz*sy + // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx + // cy*sx*sz cz*sx cx*cy+sx*sz*sy + + Vector3 euler; + real_t sz = rows[0][1]; + if (sz < (1.0f - (real_t)CMP_EPSILON)) { + if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(rows[2][1], rows[1][1]); + euler.y = Math::atan2(rows[0][2], rows[0][0]); + euler.z = Math::asin(-sz); + } else { + // It's -1 + euler.x = -Math::atan2(rows[1][2], rows[2][2]); + euler.y = 0.0f; + euler.z = Math_PI / 2.0f; + } + } else { + // It's 1 + euler.x = -Math::atan2(rows[1][2], rows[2][2]); + euler.y = 0.0f; + euler.z = -Math_PI / 2.0f; + } + return euler; + } break; + case EULER_ORDER_YXZ: { + // Euler angles in YXZ convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy + // cx*sz cx*cz -sx + // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx + + Vector3 euler; + + real_t m12 = rows[1][2]; + + if (m12 < (1 - (real_t)CMP_EPSILON)) { + if (m12 > -(1 - (real_t)CMP_EPSILON)) { + // is this a pure X rotation? + if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { + // return the simplest form (human friendlier in editor and scripts) + euler.x = atan2(-m12, rows[1][1]); + euler.y = 0; + euler.z = 0; + } else { + euler.x = asin(-m12); + euler.y = atan2(rows[0][2], rows[2][2]); + euler.z = atan2(rows[1][0], rows[1][1]); + } + } else { // m12 == -1 + euler.x = Math_PI * 0.5f; + euler.y = atan2(rows[0][1], rows[0][0]); + euler.z = 0; + } + } else { // m12 == 1 + euler.x = -Math_PI * 0.5f; + euler.y = -atan2(rows[0][1], rows[0][0]); + euler.z = 0; + } + + return euler; + } break; + case EULER_ORDER_YZX: { + // Euler angles in YZX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx + // sz cz*cx -cz*sx + // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx + + Vector3 euler; + real_t sz = rows[1][0]; + if (sz < (1.0f - (real_t)CMP_EPSILON)) { + if (sz > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(-rows[1][2], rows[1][1]); + euler.y = Math::atan2(-rows[2][0], rows[0][0]); + euler.z = Math::asin(sz); + } else { + // It's -1 + euler.x = Math::atan2(rows[2][1], rows[2][2]); + euler.y = 0.0f; + euler.z = -Math_PI / 2.0f; + } + } else { + // It's 1 + euler.x = Math::atan2(rows[2][1], rows[2][2]); + euler.y = 0.0f; + euler.z = Math_PI / 2.0f; + } + return euler; + } break; + case EULER_ORDER_ZXY: { + // Euler angles in ZXY convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx + // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx + // -cx*sy sx cx*cy + Vector3 euler; + real_t sx = rows[2][1]; + if (sx < (1.0f - (real_t)CMP_EPSILON)) { + if (sx > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::asin(sx); + euler.y = Math::atan2(-rows[2][0], rows[2][2]); + euler.z = Math::atan2(-rows[0][1], rows[1][1]); + } else { + // It's -1 + euler.x = -Math_PI / 2.0f; + euler.y = Math::atan2(rows[0][2], rows[0][0]); + euler.z = 0; + } + } else { + // It's 1 + euler.x = Math_PI / 2.0f; + euler.y = Math::atan2(rows[0][2], rows[0][0]); + euler.z = 0; + } + return euler; + } break; + case EULER_ORDER_ZYX: { + // Euler angles in ZYX convention. + // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix + // + // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy + // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx + // -sy cy*sx cy*cx + Vector3 euler; + real_t sy = rows[2][0]; + if (sy < (1.0f - (real_t)CMP_EPSILON)) { + if (sy > -(1.0f - (real_t)CMP_EPSILON)) { + euler.x = Math::atan2(rows[2][1], rows[2][2]); + euler.y = Math::asin(-sy); + euler.z = Math::atan2(rows[1][0], rows[0][0]); + } else { + // It's -1 + euler.x = 0; + euler.y = Math_PI / 2.0f; + euler.z = -Math::atan2(rows[0][1], rows[1][1]); + } + } else { + // It's 1 euler.x = 0; - euler.y = atan2(rows[0][2], rows[0][0]); - euler.z = 0; - } else { - euler.x = Math::atan2(-rows[1][2], rows[2][2]); - euler.y = Math::asin(sy); - euler.z = Math::atan2(-rows[0][1], rows[0][0]); + euler.y = -Math_PI / 2.0f; + euler.z = -Math::atan2(rows[0][1], rows[1][1]); } - } else { - euler.x = Math::atan2(rows[2][1], rows[1][1]); - euler.y = -Math_PI / 2.0; - euler.z = 0.0; + return euler; + } break; + default: { + ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)"); } - } else { - euler.x = Math::atan2(rows[2][1], rows[1][1]); - euler.y = Math_PI / 2.0; - euler.z = 0.0; } - return euler; + return Vector3(); } -// set_euler_xyz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses XYZ convention (Z is the first rotation). -void Basis::set_euler_xyz(const Vector3 &p_euler) { +void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); + Basis xmat(1, 0, 0, 0, c, -s, 0, s, c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); + Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); + Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1); - // optimizer will optimize away all this anyway - *this = xmat * (ymat * zmat); -} - -Vector3 Basis::get_euler_xzy() const { - // Euler angles in XZY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy -sz cz*sy - // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx - // cy*sx*sz cz*sx cx*cy+sx*sz*sy - - Vector3 euler; - real_t sz = rows[0][1]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(rows[2][1], rows[1][1]); - euler.y = Math::atan2(rows[0][2], rows[0][0]); - euler.z = Math::asin(-sz); - } else { - // It's -1 - euler.x = -Math::atan2(rows[1][2], rows[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; + switch (p_order) { + case EULER_ORDER_XYZ: { + *this = xmat * (ymat * zmat); + } break; + case EULER_ORDER_XZY: { + *this = xmat * zmat * ymat; + } break; + case EULER_ORDER_YXZ: { + *this = ymat * xmat * zmat; + } break; + case EULER_ORDER_YZX: { + *this = ymat * zmat * xmat; + } break; + case EULER_ORDER_ZXY: { + *this = zmat * xmat * ymat; + } break; + case EULER_ORDER_ZYX: { + *this = zmat * ymat * xmat; + } break; + default: { + ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)"); } - } else { - // It's 1 - euler.x = -Math::atan2(rows[1][2], rows[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; } - return euler; -} - -void Basis::set_euler_xzy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = xmat * zmat * ymat; -} - -Vector3 Basis::get_euler_yzx() const { - // Euler angles in YZX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx - // sz cz*cx -cz*sx - // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx - - Vector3 euler; - real_t sz = rows[1][0]; - if (sz < (1.0 - CMP_EPSILON)) { - if (sz > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(-rows[1][2], rows[1][1]); - euler.y = Math::atan2(-rows[2][0], rows[0][0]); - euler.z = Math::asin(sz); - } else { - // It's -1 - euler.x = Math::atan2(rows[2][1], rows[2][2]); - euler.y = 0.0; - euler.z = -Math_PI / 2.0; - } - } else { - // It's 1 - euler.x = Math::atan2(rows[2][1], rows[2][2]); - euler.y = 0.0; - euler.z = Math_PI / 2.0; - } - return euler; -} - -void Basis::set_euler_yzx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = ymat * zmat * xmat; -} - -// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention, -// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned -// as the x, y, and z components of a Vector3 respectively. -Vector3 Basis::get_euler_yxz() const { - // Euler angles in YXZ convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy - // cx*sz cx*cz -sx - // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx - - Vector3 euler; - - real_t m12 = rows[1][2]; - - if (m12 < (1 - CMP_EPSILON)) { - if (m12 > -(1 - CMP_EPSILON)) { - // is this a pure X rotation? - if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) { - // return the simplest form (human friendlier in editor and scripts) - euler.x = atan2(-m12, rows[1][1]); - euler.y = 0; - euler.z = 0; - } else { - euler.x = asin(-m12); - euler.y = atan2(rows[0][2], rows[2][2]); - euler.z = atan2(rows[1][0], rows[1][1]); - } - } else { // m12 == -1 - euler.x = Math_PI * 0.5; - euler.y = atan2(rows[0][1], rows[0][0]); - euler.z = 0; - } - } else { // m12 == 1 - euler.x = -Math_PI * 0.5; - euler.y = -atan2(rows[0][1], rows[0][0]); - euler.z = 0; - } - - return euler; -} - -// set_euler_yxz expects a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// The current implementation uses YXZ convention (Z is the first rotation). -void Basis::set_euler_yxz(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - // optimizer will optimize away all this anyway - *this = ymat * xmat * zmat; -} - -Vector3 Basis::get_euler_zxy() const { - // Euler angles in ZXY convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx - // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx - // -cx*sy sx cx*cy - Vector3 euler; - real_t sx = rows[2][1]; - if (sx < (1.0 - CMP_EPSILON)) { - if (sx > -(1.0 - CMP_EPSILON)) { - euler.x = Math::asin(sx); - euler.y = Math::atan2(-rows[2][0], rows[2][2]); - euler.z = Math::atan2(-rows[0][1], rows[1][1]); - } else { - // It's -1 - euler.x = -Math_PI / 2.0; - euler.y = Math::atan2(rows[0][2], rows[0][0]); - euler.z = 0; - } - } else { - // It's 1 - euler.x = Math_PI / 2.0; - euler.y = Math::atan2(rows[0][2], rows[0][0]); - euler.z = 0; - } - return euler; -} - -void Basis::set_euler_zxy(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * xmat * ymat; -} - -Vector3 Basis::get_euler_zyx() const { - // Euler angles in ZYX convention. - // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix - // - // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy - // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx - // -sy cy*sx cy*cx - Vector3 euler; - real_t sy = rows[2][0]; - if (sy < (1.0 - CMP_EPSILON)) { - if (sy > -(1.0 - CMP_EPSILON)) { - euler.x = Math::atan2(rows[2][1], rows[2][2]); - euler.y = Math::asin(-sy); - euler.z = Math::atan2(rows[1][0], rows[0][0]); - } else { - // It's -1 - euler.x = 0; - euler.y = Math_PI / 2.0; - euler.z = -Math::atan2(rows[0][1], rows[1][1]); - } - } else { - // It's 1 - euler.x = 0; - euler.y = -Math_PI / 2.0; - euler.z = -Math::atan2(rows[0][1], rows[1][1]); - } - return euler; -} - -void Basis::set_euler_zyx(const Vector3 &p_euler) { - real_t c, s; - - c = Math::cos(p_euler.x); - s = Math::sin(p_euler.x); - Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c); - - c = Math::cos(p_euler.y); - s = Math::sin(p_euler.y); - Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c); - - c = Math::cos(p_euler.z); - s = Math::sin(p_euler.z); - Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0); - - *this = zmat * ymat * xmat; } bool Basis::is_equal_approx(const Basis &p_basis) const { @@ -757,47 +709,38 @@ bool Basis::operator!=(const Basis &p_matrix) const { } Basis::operator String() const { - String mtx; - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - if (i != 0 || j != 0) { - mtx = mtx + ", "; - } - - mtx = mtx + String::num(rows[j][i]); // matrix is stored transposed for performance, so print it transposed - } - } - - return mtx; + return "[X: " + get_column(0).operator String() + + ", Y: " + get_column(1).operator String() + + ", Z: " + get_column(2).operator String() + "]"; } Quaternion Basis::get_quaternion() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_rotation(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors."); #endif /* Allow getting a quaternion from an unnormalized transform */ Basis m = *this; real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2]; real_t temp[4]; - if (trace > 0.0) { - real_t s = Math::sqrt(trace + 1.0); - temp[3] = (s * 0.5); - s = 0.5 / s; + if (trace > 0.0f) { + real_t s = Math::sqrt(trace + 1.0f); + temp[3] = (s * 0.5f); + s = 0.5f / s; temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s); temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s); temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s); } else { - int i = m.rows[0][0] < m.rows[1][1] ? - (m.rows[1][1] < m.rows[2][2] ? 2 : 1) : - (m.rows[0][0] < m.rows[2][2] ? 2 : 0); + int i = m.rows[0][0] < m.rows[1][1] + ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1) + : (m.rows[0][0] < m.rows[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; - real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0); - temp[i] = s * 0.5; - s = 0.5 / s; + real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f); + temp[i] = s * 0.5f; + s = 0.5f / s; temp[3] = (m.rows[k][j] - m.rows[j][k]) * s; temp[j] = (m.rows[j][i] + m.rows[i][j]) * s; @@ -807,97 +750,34 @@ Quaternion Basis::get_quaternion() const { return Quaternion(temp[0], temp[1], temp[2], temp[3]); } -static const Basis _ortho_bases[24] = { - Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), - Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), - Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), - Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), - Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), - Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), - Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), - Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), - Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), - Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), - Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), - Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), - Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), - Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), - Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), - Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), - Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), - Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), - Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), - Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), - Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), - Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), - Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), - Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) -}; - -int Basis::get_orthogonal_index() const { - // could be sped up if i come up with a way - Basis orth = *this; - for (int i = 0; i < 3; i++) { - for (int j = 0; j < 3; j++) { - real_t v = orth[i][j]; - if (v > 0.5) { - v = 1.0; - } else if (v < -0.5) { - v = -1.0; - } else { - v = 0; - } - - orth[i][j] = v; - } - } - - for (int i = 0; i < 24; i++) { - if (_ortho_bases[i] == orth) { - return i; - } - } - - return 0; -} - -void Basis::set_orthogonal_index(int p_index) { - // there only exist 24 orthogonal bases in r3 - ERR_FAIL_INDEX(p_index, 24); - - *this = _ortho_bases[p_index]; -} - void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { /* checking this is a bad idea, because obtaining from scaled transform is a valid use case #ifdef MATH_CHECKS ERR_FAIL_COND(!is_rotation()); #endif -*/ - real_t angle, x, y, z; // variables for result - real_t epsilon = 0.01; // margin to allow for rounding errors - real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees + */ - if ((Math::abs(rows[1][0] - rows[0][1]) < epsilon) && (Math::abs(rows[2][0] - rows[0][2]) < epsilon) && (Math::abs(rows[2][1] - rows[1][2]) < epsilon)) { - // singularity found - // first check for identity matrix which must have +1 for all terms - // in leading diagonaland zero in other terms - if ((Math::abs(rows[1][0] + rows[0][1]) < epsilon2) && (Math::abs(rows[2][0] + rows[0][2]) < epsilon2) && (Math::abs(rows[2][1] + rows[1][2]) < epsilon2) && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < epsilon2)) { - // this singularity is identity matrix so angle = 0 + // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm + real_t x, y, z; // Variables for result. + if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) { + // Singularity found. + // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms. + if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) { + // This singularity is identity matrix so angle = 0. r_axis = Vector3(0, 1, 0); r_angle = 0; return; } - // otherwise this singularity is angle = 180 - angle = Math_PI; + // Otherwise this singularity is angle = 180. real_t xx = (rows[0][0] + 1) / 2; real_t yy = (rows[1][1] + 1) / 2; real_t zz = (rows[2][2] + 1) / 2; - real_t xy = (rows[1][0] + rows[0][1]) / 4; - real_t xz = (rows[2][0] + rows[0][2]) / 4; - real_t yz = (rows[2][1] + rows[1][2]) / 4; - if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term - if (xx < epsilon) { + real_t xy = (rows[0][1] + rows[1][0]) / 4; + real_t xz = (rows[0][2] + rows[2][0]) / 4; + real_t yz = (rows[1][2] + rows[2][1]) / 4; + + if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term. + if (xx < CMP_EPSILON) { x = 0; y = Math_SQRT12; z = Math_SQRT12; @@ -906,8 +786,8 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { y = xy / x; z = xz / x; } - } else if (yy > zz) { // rows[1][1] is the largest diagonal term - if (yy < epsilon) { + } else if (yy > zz) { // rows[1][1] is the largest diagonal term. + if (yy < CMP_EPSILON) { x = Math_SQRT12; y = 0; z = Math_SQRT12; @@ -916,8 +796,8 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { x = xy / y; z = yz / y; } - } else { // rows[2][2] is the largest diagonal term so base result on this - if (zz < epsilon) { + } else { // rows[2][2] is the largest diagonal term so base result on this. + if (zz < CMP_EPSILON) { x = Math_SQRT12; y = Math_SQRT12; z = 0; @@ -928,48 +808,50 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const { } } r_axis = Vector3(x, y, z); - r_angle = angle; + r_angle = Math_PI; return; } - // as we have reached here there are no singularities so we can handle normally - real_t s = Math::sqrt((rows[1][2] - rows[2][1]) * (rows[1][2] - rows[2][1]) + (rows[2][0] - rows[0][2]) * (rows[2][0] - rows[0][2]) + (rows[0][1] - rows[1][0]) * (rows[0][1] - rows[1][0])); // s=|axis||sin(angle)|, used to normalise + // As we have reached here there are no singularities so we can handle normally. + double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalise. - angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2); - if (angle < 0) { - s = -s; + if (Math::abs(s) < CMP_EPSILON) { + // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above. + s = 1; } + x = (rows[2][1] - rows[1][2]) / s; y = (rows[0][2] - rows[2][0]) / s; z = (rows[1][0] - rows[0][1]) / s; r_axis = Vector3(x, y, z); - r_angle = angle; + // CLAMP to avoid NaN if the value passed to acos is not in [0,1]. + r_angle = Math::acos(CLAMP((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2, (real_t)0.0, (real_t)1.0)); } -void Basis::set_quaternion(const Quaternion &p_quat) { - real_t d = p_quat.length_squared(); - real_t s = 2.0 / d; - real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; - real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; - real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; - real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; - set(1.0 - (yy + zz), xy - wz, xz + wy, - xy + wz, 1.0 - (xx + zz), yz - wx, - xz - wy, yz + wx, 1.0 - (xx + yy)); +void Basis::set_quaternion(const Quaternion &p_quaternion) { + real_t d = p_quaternion.length_squared(); + real_t s = 2.0f / d; + real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s; + real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs; + real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs; + real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs; + set(1.0f - (yy + zz), xy - wz, xz + wy, + xy + wz, 1.0f - (xx + zz), yz - wx, + xz - wy, yz + wx, 1.0f - (xx + yy)); } -void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { +void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle #ifdef MATH_CHECKS - ERR_FAIL_COND(!p_axis.is_normalized()); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z); - real_t cosine = Math::cos(p_phi); - rows[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x); - rows[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y); - rows[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z); + real_t cosine = Math::cos(p_angle); + rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x); + rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y); + rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z); - real_t sine = Math::sin(p_phi); + real_t sine = Math::sin(p_angle); real_t t = 1 - cosine; real_t xyzt = p_axis.x * p_axis.y * t; @@ -988,22 +870,24 @@ void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) { rows[2][1] = xyzt + zyxs; } -void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_phi, const Vector3 &p_scale) { - set_diagonal(p_scale); - rotate(p_axis, p_phi); +void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { + _set_diagonal(p_scale); + rotate(p_axis, p_angle); } -void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale) { - set_diagonal(p_scale); - rotate(p_euler); +void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) { + _set_diagonal(p_scale); + rotate(p_euler, p_order); } -void Basis::set_quaternion_scale(const Quaternion &p_quat, const Vector3 &p_scale) { - set_diagonal(p_scale); - rotate(p_quat); +void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) { + _set_diagonal(p_scale); + rotate(p_quaternion); } -void Basis::set_diagonal(const Vector3 &p_diag) { +// This also sets the non-diagonal elements to 0, which is misleading from the +// name, so we want this method to be private. Use `from_scale` externally. +void Basis::_set_diagonal(const Vector3 &p_diag) { rows[0][0] = p_diag.x; rows[0][1] = 0; rows[0][2] = 0; @@ -1017,8 +901,17 @@ void Basis::set_diagonal(const Vector3 &p_diag) { rows[2][2] = p_diag.z; } +Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const { + Basis b; + b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight); + b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight); + b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight); + + return b; +} + Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const { - // consider scale + //consider scale Quaternion from(*this); Quaternion to(p_to); @@ -1049,7 +942,7 @@ void Basis::rotate_sh(real_t *p_values) { const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv; const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv; - real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; + const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] }; real_t m00 = rows[0][0]; real_t m01 = rows[0][1]; @@ -1140,4 +1033,22 @@ void Basis::rotate_sh(real_t *p_values) { p_values[8] = d4 * s_scale_dst4; } +Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up) { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero."); + ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero."); +#endif + Vector3 v_z = -p_target.normalized(); + Vector3 v_x = p_up.cross(v_z); +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other."); +#endif + v_x.normalize(); + Vector3 v_y = v_z.cross(v_x); + + Basis basis; + basis.set_columns(v_x, v_y, v_z); + return basis; +} + } // namespace godot diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index 7a06cda1..6b1ff14b 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -35,13 +35,18 @@ namespace godot { +real_t Quaternion::angle_to(const Quaternion &p_to) const { + real_t d = dot(p_to); + return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); +} + // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); - return m.get_euler_xyz(); + return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format @@ -50,17 +55,20 @@ Vector3 Quaternion::get_euler_xyz() const { // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_yxz() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0)); + ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); - return m.get_euler_yxz(); + return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { - x = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; - y = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; - z = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; + real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; + real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; + real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; + x = xx; + y = yy; + z = zz; } Quaternion Quaternion::operator*(const Quaternion &p_q) const { @@ -69,8 +77,8 @@ Quaternion Quaternion::operator*(const Quaternion &p_q) const { return r; } -bool Quaternion::is_equal_approx(const Quaternion &p_quat) const { - return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); +bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const { + return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w); } real_t Quaternion::length() const { @@ -91,15 +99,32 @@ bool Quaternion::is_normalized() const { Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); #endif return Quaternion(-x, -y, -z, w); } +Quaternion Quaternion::log() const { + Quaternion src = *this; + Vector3 src_v = src.get_axis() * src.get_angle(); + return Quaternion(src_v.x, src_v.y, src_v.z, 0); +} + +Quaternion Quaternion::exp() const { + Quaternion src = *this; + Vector3 src_v = Vector3(src.x, src.y, src.z); + real_t theta = src_v.length(); + src_v = src_v.normalized(); + if (theta < CMP_EPSILON || !src_v.is_normalized()) { + return Quaternion(0, 0, 0, 1); + } + return Quaternion(src_v, theta); +} + Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; @@ -108,22 +133,16 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con cosom = dot(p_to); // adjust signs (if necessary) - if (cosom < 0.0) { + if (cosom < 0.0f) { cosom = -cosom; - to1.x = -p_to.x; - to1.y = -p_to.y; - to1.z = -p_to.z; - to1.w = -p_to.w; + to1 = -p_to; } else { - to1.x = p_to.x; - to1.y = p_to.y; - to1.z = p_to.z; - to1.w = p_to.w; + to1 = p_to; } // calculate coefficients - if ((1.0 - cosom) > CMP_EPSILON) { + if ((1.0f - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); @@ -132,7 +151,7 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation - scale0 = 1.0 - p_weight; + scale0 = 1.0f - p_weight; scale1 = p_weight; } // calculate final values @@ -145,21 +164,21 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_to.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif const Quaternion &from = *this; real_t dot = from.dot(p_to); - if (Math::abs(dot) > 0.9999) { + if (Math::absf(dot) > 0.9999f) { return from; } real_t theta = Math::acos(dot), - sinT = 1.0 / Math::sin(theta), + sinT = 1.0f / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, - invFactor = Math::sin((1.0 - p_weight) * theta) * sinT; + invFactor = Math::sin((1.0f - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, @@ -167,25 +186,126 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c invFactor * from.w + newFactor * p_to.w); } -Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V(!is_normalized(), Quaternion()); - ERR_FAIL_COND_V(!p_b.is_normalized(), Quaternion()); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif - //the only way to do slerp :| - real_t t2 = (1.0 - p_weight) * p_weight * 2; - Quaternion sp = this->slerp(p_b, p_weight); - Quaternion sq = p_pre_a.slerpni(p_post_b, p_weight); - return sp.slerpni(sq, t2); + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = Math::sign(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = Math::sign(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); + ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); + ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blends. + return q1.slerp(q2, p_weight); +} + +Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, + const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); +#endif + Quaternion from_q = *this; + Quaternion pre_q = p_pre_a; + Quaternion to_q = p_b; + Quaternion post_q = p_post_b; + + // Align flip phases. + from_q = Basis(from_q).get_rotation_quaternion(); + pre_q = Basis(pre_q).get_rotation_quaternion(); + to_q = Basis(to_q).get_rotation_quaternion(); + post_q = Basis(post_q).get_rotation_quaternion(); + + // Flip quaternions to shortest path if necessary. + bool flip1 = Math::sign(from_q.dot(pre_q)); + pre_q = flip1 ? -pre_q : pre_q; + bool flip2 = Math::sign(from_q.dot(to_q)); + to_q = flip2 ? -to_q : to_q; + bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : Math::sign(to_q.dot(post_q)); + post_q = flip3 ? -post_q : post_q; + + // Calc by Expmap in from_q space. + Quaternion ln_from = Quaternion(0, 0, 0, 0); + Quaternion ln_to = (from_q.inverse() * to_q).log(); + Quaternion ln_pre = (from_q.inverse() * pre_q).log(); + Quaternion ln_post = (from_q.inverse() * post_q).log(); + Quaternion ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q1 = from_q * ln.exp(); + + // Calc by Expmap in to_q space. + ln_from = (to_q.inverse() * from_q).log(); + ln_to = Quaternion(0, 0, 0, 0); + ln_pre = (to_q.inverse() * pre_q).log(); + ln_post = (to_q.inverse() * post_q).log(); + ln = Quaternion(0, 0, 0, 0); + ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); + Quaternion q2 = to_q * ln.exp(); + + // To cancel error made by Expmap ambiguity, do blends. + return q1.slerp(q2, p_weight); } Quaternion::operator String() const { - return String::num(x, 5) + ", " + String::num(y, 5) + ", " + String::num(z, 5) + ", " + String::num(w, 5); + return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; +} + +Vector3 Quaternion::get_axis() const { + if (Math::abs(w) > 1 - CMP_EPSILON) { + return Vector3(x, y, z); + } + real_t r = ((real_t)1) / Math::sqrt(1 - w * w); + return Vector3(x * r, y * r, z * r); +} + +real_t Quaternion::get_angle() const { + return 2 * Math::acos(w); } Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND(!p_axis.is_normalized()); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif real_t d = p_axis.length(); if (d == 0) { @@ -194,8 +314,8 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { z = 0; w = 0; } else { - real_t sin_angle = Math::sin(p_angle * 0.5); - real_t cos_angle = Math::cos(p_angle * 0.5); + real_t sin_angle = Math::sin(p_angle * 0.5f); + real_t cos_angle = Math::cos(p_angle * 0.5f); real_t s = sin_angle / d; x = p_axis.x * s; y = p_axis.y * s; @@ -209,9 +329,9 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Quaternion::Quaternion(const Vector3 &p_euler) { - real_t half_a1 = p_euler.y * 0.5; - real_t half_a2 = p_euler.x * 0.5; - real_t half_a3 = p_euler.z * 0.5; + real_t half_a1 = p_euler.y * 0.5f; + real_t half_a2 = p_euler.x * 0.5f; + real_t half_a3 = p_euler.z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) diff --git a/src/variant/transform3d.cpp b/src/variant/transform3d.cpp index bd1e5c19..5f55fd33 100644 --- a/src/variant/transform3d.cpp +++ b/src/variant/transform3d.cpp @@ -58,13 +58,13 @@ Transform3D Transform3D::inverse() const { return ret; } -void Transform3D::rotate(const Vector3 &p_axis, real_t p_phi) { - *this = rotated(p_axis, p_phi); +void Transform3D::rotate(const Vector3 &p_axis, real_t p_angle) { + *this = rotated(p_axis, p_angle); } -Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_phi) const { +Transform3D Transform3D::rotated(const Vector3 &p_axis, real_t p_angle) const { // Equivalent to left multiplication - Basis p_basis(p_axis, p_phi); + Basis p_basis(p_axis, p_angle); return Transform3D(p_basis * basis, p_basis.xform(origin)); } @@ -74,51 +74,29 @@ Transform3D Transform3D::rotated_local(const Vector3 &p_axis, real_t p_angle) co return Transform3D(basis * p_basis, origin); } -void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_phi) { - basis.rotate(p_axis, p_phi); +void Transform3D::rotate_basis(const Vector3 &p_axis, real_t p_angle) { + basis.rotate(p_axis, p_angle); } Transform3D Transform3D::looking_at(const Vector3 &p_target, const Vector3 &p_up) const { +#ifdef MATH_CHECKS + ERR_FAIL_COND_V_MSG(origin.is_equal_approx(p_target), Transform3D(), "The transform's origin and target can't be equal."); +#endif Transform3D t = *this; - t.set_look_at(origin, p_target, p_up); + t.basis = Basis::looking_at(p_target - origin, p_up); return t; } void Transform3D::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) { #ifdef MATH_CHECKS - ERR_FAIL_COND(p_eye == p_target); - ERR_FAIL_COND(p_up.length() == 0); + ERR_FAIL_COND_MSG(p_eye.is_equal_approx(p_target), "The eye and target vectors can't be equal."); #endif - // RefCounted: MESA source code - Vector3 v_x, v_y, v_z; - - /* Make rotation matrix */ - - /* Z vector */ - v_z = p_eye - p_target; - - v_z.normalize(); - - v_y = p_up; - - v_x = v_y.cross(v_z); -#ifdef MATH_CHECKS - ERR_FAIL_COND(v_x.length() == 0); -#endif - - /* Recompute Y = Z cross X */ - v_y = v_z.cross(v_x); - - v_x.normalize(); - v_y.normalize(); - - basis.set(v_x, v_y, v_z); - + basis = Basis::looking_at(p_target - p_eye, p_up); origin = p_eye; } Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t p_c) const { - /* not sure if very "efficient" but good enough? */ + Transform3D interp; Vector3 src_scale = basis.get_scale(); Quaternion src_rot = basis.get_rotation_quaternion(); @@ -128,7 +106,6 @@ Transform3D Transform3D::interpolate_with(const Transform3D &p_transform, real_t Quaternion dst_rot = p_transform.basis.get_rotation_quaternion(); Vector3 dst_loc = p_transform.origin; - Transform3D interp; interp.basis.set_quaternion_scale(src_rot.slerp(dst_rot, p_c).normalized(), src_scale.lerp(dst_scale, p_c)); interp.origin = src_loc.lerp(dst_loc, p_c); @@ -154,11 +131,11 @@ void Transform3D::scale_basis(const Vector3 &p_scale) { basis.scale(p_scale); } -void Transform3D::translate(real_t p_tx, real_t p_ty, real_t p_tz) { - translate(Vector3(p_tx, p_ty, p_tz)); +void Transform3D::translate_local(real_t p_tx, real_t p_ty, real_t p_tz) { + translate_local(Vector3(p_tx, p_ty, p_tz)); } -void Transform3D::translate(const Vector3 &p_translation) { +void Transform3D::translate_local(const Vector3 &p_translation) { for (int i = 0; i < 3; i++) { origin[i] += basis[i].dot(p_translation); } @@ -184,6 +161,16 @@ Transform3D Transform3D::orthonormalized() const { return _copy; } +void Transform3D::orthogonalize() { + basis.orthogonalize(); +} + +Transform3D Transform3D::orthogonalized() const { + Transform3D _copy = *this; + _copy.orthogonalize(); + return _copy; +} + bool Transform3D::is_equal_approx(const Transform3D &p_transform) const { return basis.is_equal_approx(p_transform.basis) && origin.is_equal_approx(p_transform.origin); } @@ -207,8 +194,22 @@ Transform3D Transform3D::operator*(const Transform3D &p_transform) const { return t; } +void Transform3D::operator*=(const real_t p_val) { + origin *= p_val; + basis *= p_val; +} + +Transform3D Transform3D::operator*(const real_t p_val) const { + Transform3D ret(*this); + ret *= p_val; + return ret; +} + Transform3D::operator String() const { - return basis.operator String() + " - " + origin.operator String(); + return "[X: " + basis.get_column(0).operator String() + + ", Y: " + basis.get_column(1).operator String() + + ", Z: " + basis.get_column(2).operator String() + + ", O: " + origin.operator String() + "]"; } Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) : @@ -218,9 +219,9 @@ Transform3D::Transform3D(const Basis &p_basis, const Vector3 &p_origin) : Transform3D::Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin) : origin(p_origin) { - basis.set_axis(0, p_x); - basis.set_axis(1, p_y); - basis.set_axis(2, p_z); + basis.set_column(0, p_x); + basis.set_column(1, p_y); + basis.set_column(2, p_z); } Transform3D::Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz) {