diff --git a/include/godot_cpp/variant/quaternion.hpp b/include/godot_cpp/variant/quaternion.hpp index 5de91b20..8d0afd78 100644 --- a/include/godot_cpp/variant/quaternion.hpp +++ b/include/godot_cpp/variant/quaternion.hpp @@ -31,6 +31,7 @@ #ifndef GODOT_QUATERNION_HPP #define GODOT_QUATERNION_HPP +#include #include #include @@ -47,11 +48,11 @@ struct _NO_DISCARD_ Quaternion { real_t components[4] = { 0, 0, 0, 1.0 }; }; - _FORCE_INLINE_ real_t &operator[](int idx) { - return components[idx]; + _FORCE_INLINE_ real_t &operator[](int p_idx) { + return components[p_idx]; } - _FORCE_INLINE_ const real_t &operator[](int idx) const { - return components[idx]; + _FORCE_INLINE_ const real_t &operator[](int p_idx) const { + return components[p_idx]; } _FORCE_INLINE_ real_t length_squared() const; bool is_equal_approx(const Quaternion &p_quaternion) const; @@ -66,14 +67,13 @@ struct _NO_DISCARD_ Quaternion { _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const; real_t angle_to(const Quaternion &p_to) const; - Vector3 get_euler_xyz() const; - Vector3 get_euler_yxz() const; - Vector3 get_euler() const { return get_euler_yxz(); } + Vector3 get_euler(EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) const; + static Quaternion from_euler(const Vector3 &p_euler); - Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const; - Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const; - Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const; - Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; + Quaternion slerp(const Quaternion &p_to, real_t p_weight) const; + Quaternion slerpni(const Quaternion &p_to, real_t p_weight) const; + Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const; + Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const; Vector3 get_axis() const; real_t get_angle() const; @@ -89,28 +89,28 @@ struct _NO_DISCARD_ Quaternion { void operator*=(const Quaternion &p_q); Quaternion operator*(const Quaternion &p_q) const; - _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const { + _FORCE_INLINE_ Vector3 xform(const Vector3 &p_v) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), p_v, "The quaternion " + operator String() + " must be normalized."); #endif Vector3 u(x, y, z); - Vector3 uv = u.cross(v); - return v + ((uv * w) + u.cross(uv)) * ((real_t)2); + Vector3 uv = u.cross(p_v); + return p_v + ((uv * w) + u.cross(uv)) * ((real_t)2); } - _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const { - return inverse().xform(v); + _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_v) const { + return inverse().xform(p_v); } _FORCE_INLINE_ void operator+=(const Quaternion &p_q); _FORCE_INLINE_ void operator-=(const Quaternion &p_q); - _FORCE_INLINE_ void operator*=(const real_t &s); - _FORCE_INLINE_ void operator/=(const real_t &s); - _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const; - _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const; + _FORCE_INLINE_ void operator*=(real_t p_s); + _FORCE_INLINE_ void operator/=(real_t p_s); + _FORCE_INLINE_ Quaternion operator+(const Quaternion &p_q2) const; + _FORCE_INLINE_ Quaternion operator-(const Quaternion &p_q2) const; _FORCE_INLINE_ Quaternion operator-() const; - _FORCE_INLINE_ Quaternion operator*(const real_t &s) const; - _FORCE_INLINE_ Quaternion operator/(const real_t &s) const; + _FORCE_INLINE_ Quaternion operator*(real_t p_s) const; + _FORCE_INLINE_ Quaternion operator/(real_t p_s) const; _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const; _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const; @@ -128,8 +128,6 @@ struct _NO_DISCARD_ Quaternion { Quaternion(const Vector3 &p_axis, real_t p_angle); - Quaternion(const Vector3 &p_euler); - Quaternion(const Quaternion &p_q) : x(p_q.x), y(p_q.y), @@ -144,9 +142,9 @@ struct _NO_DISCARD_ Quaternion { w = p_q.w; } - Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc. - Vector3 c = v0.cross(v1); - real_t d = v0.dot(v1); + Quaternion(const Vector3 &p_v0, const Vector3 &p_v1) { // Shortest arc. + Vector3 c = p_v0.cross(p_v1); + real_t d = p_v0.dot(p_v1); if (d < -1.0f + (real_t)CMP_EPSILON) { x = 0; @@ -187,25 +185,25 @@ void Quaternion::operator-=(const Quaternion &p_q) { w -= p_q.w; } -void Quaternion::operator*=(const real_t &s) { - x *= s; - y *= s; - z *= s; - w *= s; +void Quaternion::operator*=(real_t p_s) { + x *= p_s; + y *= p_s; + z *= p_s; + w *= p_s; } -void Quaternion::operator/=(const real_t &s) { - *this *= 1.0f / s; +void Quaternion::operator/=(real_t p_s) { + *this *= 1.0f / p_s; } -Quaternion Quaternion::operator+(const Quaternion &q2) const { +Quaternion Quaternion::operator+(const Quaternion &p_q2) const { const Quaternion &q1 = *this; - return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w); + return Quaternion(q1.x + p_q2.x, q1.y + p_q2.y, q1.z + p_q2.z, q1.w + p_q2.w); } -Quaternion Quaternion::operator-(const Quaternion &q2) const { +Quaternion Quaternion::operator-(const Quaternion &p_q2) const { const Quaternion &q1 = *this; - return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w); + return Quaternion(q1.x - p_q2.x, q1.y - p_q2.y, q1.z - p_q2.z, q1.w - p_q2.w); } Quaternion Quaternion::operator-() const { @@ -213,12 +211,12 @@ Quaternion Quaternion::operator-() const { return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w); } -Quaternion Quaternion::operator*(const real_t &s) const { - return Quaternion(x * s, y * s, z * s, w * s); +Quaternion Quaternion::operator*(real_t p_s) const { + return Quaternion(x * p_s, y * p_s, z * p_s, w * p_s); } -Quaternion Quaternion::operator/(const real_t &s) const { - return *this * (1.0f / s); +Quaternion Quaternion::operator/(real_t p_s) const { + return *this * (1.0f / p_s); } bool Quaternion::operator==(const Quaternion &p_quaternion) const { @@ -229,7 +227,7 @@ bool Quaternion::operator!=(const Quaternion &p_quaternion) const { return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w; } -_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) { +_FORCE_INLINE_ Quaternion operator*(real_t p_real, const Quaternion &p_quaternion) { return p_quaternion * p_real; } diff --git a/src/variant/quaternion.cpp b/src/variant/quaternion.cpp index c0108505..3dd7af54 100644 --- a/src/variant/quaternion.cpp +++ b/src/variant/quaternion.cpp @@ -37,28 +37,15 @@ namespace godot { real_t Quaternion::angle_to(const Quaternion &p_to) const { real_t d = dot(p_to); - return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); + // acos does clamping. + return Math::acos(d * d * 2 - 1); } -// get_euler_xyz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses XYZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_xyz() const { - Basis m(*this); - return m.get_euler(EULER_ORDER_XYZ); -} - -// get_euler_yxz returns a vector containing the Euler angles in the format -// (ax,ay,az), where ax is the angle of rotation around x axis, -// and similar for other axes. -// This implementation uses YXZ convention (Z is the first rotation). -Vector3 Quaternion::get_euler_yxz() const { +Vector3 Quaternion::get_euler(EulerOrder p_order) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion " + operator String() + " must be normalized."); #endif - Basis m(*this); - return m.get_euler(EULER_ORDER_YXZ); + return Basis(*this).get_euler(p_order); } void Quaternion::operator*=(const Quaternion &p_q) { @@ -103,7 +90,7 @@ bool Quaternion::is_normalized() const { Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion " + operator String() + " must be normalized."); #endif return Quaternion(-x, -y, -z, w); } @@ -125,10 +112,10 @@ Quaternion Quaternion::exp() const { return Quaternion(src_v, theta); } -Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { +Quaternion Quaternion::slerp(const Quaternion &p_to, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; @@ -166,10 +153,10 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con scale0 * w + scale1 * to1.w); } -Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { +Quaternion Quaternion::slerpni(const Quaternion &p_to, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized."); #endif const Quaternion &from = *this; @@ -190,10 +177,10 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c invFactor * from.w + newFactor * p_to.w); } -Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { +Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized."); #endif Quaternion from_q = *this; Quaternion pre_q = p_pre_a; @@ -236,15 +223,15 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); Quaternion q2 = to_q * ln.exp(); - // To cancel error made by Expmap ambiguity, do blends. + // To cancel error made by Expmap ambiguity, do blending. return q1.slerp(q2, p_weight); } -Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, - const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { +Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight, + real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const { #ifdef MATH_CHECKS - ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); - ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); + ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized."); + ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized."); #endif Quaternion from_q = *this; Quaternion pre_q = p_pre_a; @@ -287,7 +274,7 @@ Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); Quaternion q2 = to_q * ln.exp(); - // To cancel error made by Expmap ambiguity, do blends. + // To cancel error made by Expmap ambiguity, do blending. return q1.slerp(q2, p_weight); } @@ -309,7 +296,7 @@ real_t Quaternion::get_angle() const { Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS - ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); + ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized."); #endif real_t d = p_axis.length(); if (d == 0) { @@ -332,7 +319,7 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { // (ax, ay, az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). -Quaternion::Quaternion(const Vector3 &p_euler) { +Quaternion Quaternion::from_euler(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5f; real_t half_a2 = p_euler.x * 0.5f; real_t half_a3 = p_euler.z * 0.5f; @@ -348,10 +335,11 @@ Quaternion::Quaternion(const Vector3 &p_euler) { real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); - x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; - y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; - z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; - w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; + return Quaternion( + sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, + sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, + -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, + sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } } // namespace godot