Update Vector2/2i/3/3i to match the engine
parent
fa4d18f21c
commit
d479208a8f
|
@ -45,6 +45,8 @@ class Vector2 {
|
|||
friend class Variant;
|
||||
|
||||
public:
|
||||
static const int AXIS_COUNT = 2;
|
||||
|
||||
enum Axis {
|
||||
AXIS_X,
|
||||
AXIS_Y,
|
||||
|
@ -74,10 +76,6 @@ public:
|
|||
return coord[p_idx];
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void set_all(const real_t p_value) {
|
||||
x = y = p_value;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector2::Axis min_axis_index() const {
|
||||
return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
|
||||
}
|
||||
|
@ -119,6 +117,7 @@ public:
|
|||
_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
|
||||
_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
|
||||
|
||||
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
|
||||
|
@ -128,6 +127,7 @@ public:
|
|||
Vector2 reflect(const Vector2 &p_normal) const;
|
||||
|
||||
bool is_equal_approx(const Vector2 &p_v) const;
|
||||
bool is_zero_approx() const;
|
||||
|
||||
Vector2 operator+(const Vector2 &p_v) const;
|
||||
void operator+=(const Vector2 &p_v);
|
||||
|
@ -275,6 +275,13 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
|
|||
return res;
|
||||
}
|
||||
|
||||
Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
|
||||
Vector2 res = *this;
|
||||
res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
return res;
|
||||
}
|
||||
|
||||
Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
|
||||
Vector2 res = *this;
|
||||
|
||||
|
|
|
@ -45,6 +45,8 @@ class Vector2i {
|
|||
friend class Variant;
|
||||
|
||||
public:
|
||||
static const int AXIS_COUNT = 2;
|
||||
|
||||
enum Axis {
|
||||
AXIS_X,
|
||||
AXIS_Y,
|
||||
|
@ -122,7 +124,7 @@ public:
|
|||
|
||||
real_t aspect() const { return width / (real_t)height; }
|
||||
Vector2i sign() const { return Vector2i(SIGN(x), SIGN(y)); }
|
||||
Vector2i abs() const { return Vector2i(ABS(x), ABS(y)); }
|
||||
Vector2i abs() const { return Vector2i(Math::abs(x), Math::abs(y)); }
|
||||
Vector2i clamp(const Vector2i &p_min, const Vector2i &p_max) const;
|
||||
|
||||
operator String() const;
|
||||
|
|
|
@ -47,6 +47,8 @@ class Vector3 {
|
|||
friend class Variant;
|
||||
|
||||
public:
|
||||
static const int AXIS_COUNT = 3;
|
||||
|
||||
enum Axis {
|
||||
AXIS_X,
|
||||
AXIS_Y,
|
||||
|
@ -73,13 +75,6 @@ public:
|
|||
return coord[p_axis];
|
||||
}
|
||||
|
||||
void set_axis(const int p_axis, const real_t p_value);
|
||||
real_t get_axis(const int p_axis) const;
|
||||
|
||||
_FORCE_INLINE_ void set_all(const real_t p_value) {
|
||||
x = y = z = p_value;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
|
||||
return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
|
||||
}
|
||||
|
@ -110,12 +105,15 @@ public:
|
|||
_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
|
||||
_FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
|
||||
_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
|
||||
|
||||
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
|
||||
|
||||
Vector2 octahedron_encode() const;
|
||||
static Vector3 octahedron_decode(const Vector2 &p_oct);
|
||||
Vector2 octahedron_tangent_encode(const float sign) const;
|
||||
static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign);
|
||||
|
||||
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
|
||||
_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
|
||||
|
@ -144,6 +142,7 @@ public:
|
|||
_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
|
||||
|
||||
bool is_equal_approx(const Vector3 &p_v) const;
|
||||
bool is_zero_approx() const;
|
||||
|
||||
/* Operators */
|
||||
|
||||
|
@ -222,16 +221,25 @@ Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
|
|||
}
|
||||
|
||||
Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
|
||||
// This method seems more complicated than it really is, since we write out
|
||||
// the internals of some methods for efficiency (mainly, checking length).
|
||||
real_t start_length_sq = length_squared();
|
||||
real_t end_length_sq = p_to.length_squared();
|
||||
if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
|
||||
// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
|
||||
return lerp(p_to, p_weight);
|
||||
}
|
||||
Vector3 axis = cross(p_to);
|
||||
real_t axis_length_sq = axis.length_squared();
|
||||
if (unlikely(axis_length_sq == 0.0f)) {
|
||||
// Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
|
||||
return lerp(p_to, p_weight);
|
||||
}
|
||||
axis /= Math::sqrt(axis_length_sq);
|
||||
real_t start_length = Math::sqrt(start_length_sq);
|
||||
real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
|
||||
real_t angle = angle_to(p_to);
|
||||
return rotated(cross(p_to).normalized(), angle * p_weight) * (result_length / start_length);
|
||||
return rotated(axis, angle * p_weight) * (result_length / start_length);
|
||||
}
|
||||
|
||||
Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
|
||||
|
@ -242,6 +250,14 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c
|
|||
return res;
|
||||
}
|
||||
|
||||
Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
|
||||
Vector3 res = *this;
|
||||
res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
return res;
|
||||
}
|
||||
|
||||
Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
|
||||
Vector3 res = *this;
|
||||
|
||||
|
|
|
@ -45,6 +45,8 @@ class Vector3i {
|
|||
friend class Variant;
|
||||
|
||||
public:
|
||||
static const int AXIS_COUNT = 3;
|
||||
|
||||
enum Axis {
|
||||
AXIS_X,
|
||||
AXIS_Y,
|
||||
|
@ -71,9 +73,6 @@ public:
|
|||
return coord[p_axis];
|
||||
}
|
||||
|
||||
void set_axis(const int p_axis, const int32_t p_value);
|
||||
int32_t get_axis(const int p_axis) const;
|
||||
|
||||
Vector3i::Axis min_axis_index() const;
|
||||
Vector3i::Axis max_axis_index() const;
|
||||
|
||||
|
@ -135,7 +134,7 @@ double Vector3i::length() const {
|
|||
}
|
||||
|
||||
Vector3i Vector3i::abs() const {
|
||||
return Vector3i(ABS(x), ABS(y), ABS(z));
|
||||
return Vector3i(Math::abs(x), Math::abs(y), Math::abs(z));
|
||||
}
|
||||
|
||||
Vector3i Vector3i::sign() const {
|
||||
|
|
|
@ -184,6 +184,10 @@ bool Vector2::is_equal_approx(const Vector2 &p_v) const {
|
|||
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y);
|
||||
}
|
||||
|
||||
bool Vector2::is_zero_approx() const {
|
||||
return Math::is_zero_approx(x) && Math::is_zero_approx(y);
|
||||
}
|
||||
|
||||
Vector2::operator String() const {
|
||||
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ")";
|
||||
}
|
||||
|
|
|
@ -47,16 +47,6 @@ Vector3 Vector3::rotated(const Vector3 &p_axis, const real_t p_angle) const {
|
|||
return r;
|
||||
}
|
||||
|
||||
void Vector3::set_axis(const int p_axis, const real_t p_value) {
|
||||
ERR_FAIL_INDEX(p_axis, 3);
|
||||
coord[p_axis] = p_value;
|
||||
}
|
||||
|
||||
real_t Vector3::get_axis(const int p_axis) const {
|
||||
ERR_FAIL_INDEX_V(p_axis, 3, 0);
|
||||
return operator[](p_axis);
|
||||
}
|
||||
|
||||
Vector3 Vector3::clamp(const Vector3 &p_min, const Vector3 &p_max) const {
|
||||
return Vector3(
|
||||
CLAMP(x, p_min.x, p_max.x),
|
||||
|
@ -119,18 +109,38 @@ Vector3 Vector3::octahedron_decode(const Vector2 &p_oct) {
|
|||
return n.normalized();
|
||||
}
|
||||
|
||||
Basis Vector3::outer(const Vector3 &p_with) const {
|
||||
Vector3 row0(x * p_with.x, x * p_with.y, x * p_with.z);
|
||||
Vector3 row1(y * p_with.x, y * p_with.y, y * p_with.z);
|
||||
Vector3 row2(z * p_with.x, z * p_with.y, z * p_with.z);
|
||||
Vector2 Vector3::octahedron_tangent_encode(const float sign) const {
|
||||
Vector2 res = this->octahedron_encode();
|
||||
res.y = res.y * 0.5f + 0.5f;
|
||||
res.y = sign >= 0.0f ? res.y : 1 - res.y;
|
||||
return res;
|
||||
}
|
||||
|
||||
return Basis(row0, row1, row2);
|
||||
Vector3 Vector3::octahedron_tangent_decode(const Vector2 &p_oct, float *sign) {
|
||||
Vector2 oct_compressed = p_oct;
|
||||
oct_compressed.y = oct_compressed.y * 2 - 1;
|
||||
*sign = oct_compressed.y >= 0.0f ? 1.0f : -1.0f;
|
||||
oct_compressed.y = Math::abs(oct_compressed.y);
|
||||
Vector3 res = Vector3::octahedron_decode(oct_compressed);
|
||||
return res;
|
||||
}
|
||||
|
||||
Basis Vector3::outer(const Vector3 &p_with) const {
|
||||
Basis basis;
|
||||
basis.rows[0] = Vector3(x * p_with.x, x * p_with.y, x * p_with.z);
|
||||
basis.rows[1] = Vector3(y * p_with.x, y * p_with.y, y * p_with.z);
|
||||
basis.rows[2] = Vector3(z * p_with.x, z * p_with.y, z * p_with.z);
|
||||
return basis;
|
||||
}
|
||||
|
||||
bool Vector3::is_equal_approx(const Vector3 &p_v) const {
|
||||
return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z);
|
||||
}
|
||||
|
||||
bool Vector3::is_zero_approx() const {
|
||||
return Math::is_zero_approx(x) && Math::is_zero_approx(y) && Math::is_zero_approx(z);
|
||||
}
|
||||
|
||||
Vector3::operator String() const {
|
||||
return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ")";
|
||||
}
|
||||
|
|
|
@ -35,16 +35,6 @@
|
|||
|
||||
namespace godot {
|
||||
|
||||
void Vector3i::set_axis(const int p_axis, const int32_t p_value) {
|
||||
ERR_FAIL_INDEX(p_axis, 3);
|
||||
coord[p_axis] = p_value;
|
||||
}
|
||||
|
||||
int32_t Vector3i::get_axis(const int p_axis) const {
|
||||
ERR_FAIL_INDEX_V(p_axis, 3, 0);
|
||||
return operator[](p_axis);
|
||||
}
|
||||
|
||||
Vector3i::Axis Vector3i::min_axis_index() const {
|
||||
return x < y ? (x < z ? Vector3i::AXIS_X : Vector3i::AXIS_Z) : (y < z ? Vector3i::AXIS_Y : Vector3i::AXIS_Z);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue