Sync `Quaternion` with the version in Godot
parent
a98d41f62b
commit
2004af63a0
|
@ -31,6 +31,7 @@
|
|||
#ifndef GODOT_QUATERNION_HPP
|
||||
#define GODOT_QUATERNION_HPP
|
||||
|
||||
#include <godot_cpp/classes/global_constants.hpp>
|
||||
#include <godot_cpp/core/math.hpp>
|
||||
#include <godot_cpp/variant/vector3.hpp>
|
||||
|
||||
|
@ -47,11 +48,11 @@ struct _NO_DISCARD_ Quaternion {
|
|||
real_t components[4] = { 0, 0, 0, 1.0 };
|
||||
};
|
||||
|
||||
_FORCE_INLINE_ real_t &operator[](int idx) {
|
||||
return components[idx];
|
||||
_FORCE_INLINE_ real_t &operator[](int p_idx) {
|
||||
return components[p_idx];
|
||||
}
|
||||
_FORCE_INLINE_ const real_t &operator[](int idx) const {
|
||||
return components[idx];
|
||||
_FORCE_INLINE_ const real_t &operator[](int p_idx) const {
|
||||
return components[p_idx];
|
||||
}
|
||||
_FORCE_INLINE_ real_t length_squared() const;
|
||||
bool is_equal_approx(const Quaternion &p_quaternion) const;
|
||||
|
@ -66,14 +67,13 @@ struct _NO_DISCARD_ Quaternion {
|
|||
_FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
|
||||
real_t angle_to(const Quaternion &p_to) const;
|
||||
|
||||
Vector3 get_euler_xyz() const;
|
||||
Vector3 get_euler_yxz() const;
|
||||
Vector3 get_euler() const { return get_euler_yxz(); }
|
||||
Vector3 get_euler(EulerOrder p_order = EulerOrder::EULER_ORDER_YXZ) const;
|
||||
static Quaternion from_euler(const Vector3 &p_euler);
|
||||
|
||||
Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
|
||||
Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
|
||||
Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
|
||||
Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
|
||||
Quaternion slerp(const Quaternion &p_to, real_t p_weight) const;
|
||||
Quaternion slerpni(const Quaternion &p_to, real_t p_weight) const;
|
||||
Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const;
|
||||
Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const;
|
||||
|
||||
Vector3 get_axis() const;
|
||||
real_t get_angle() const;
|
||||
|
@ -89,28 +89,28 @@ struct _NO_DISCARD_ Quaternion {
|
|||
void operator*=(const Quaternion &p_q);
|
||||
Quaternion operator*(const Quaternion &p_q) const;
|
||||
|
||||
_FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
|
||||
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_v) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), p_v, "The quaternion " + operator String() + " must be normalized.");
|
||||
#endif
|
||||
Vector3 u(x, y, z);
|
||||
Vector3 uv = u.cross(v);
|
||||
return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
|
||||
Vector3 uv = u.cross(p_v);
|
||||
return p_v + ((uv * w) + u.cross(uv)) * ((real_t)2);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const {
|
||||
return inverse().xform(v);
|
||||
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_v) const {
|
||||
return inverse().xform(p_v);
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void operator+=(const Quaternion &p_q);
|
||||
_FORCE_INLINE_ void operator-=(const Quaternion &p_q);
|
||||
_FORCE_INLINE_ void operator*=(const real_t &s);
|
||||
_FORCE_INLINE_ void operator/=(const real_t &s);
|
||||
_FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const;
|
||||
_FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const;
|
||||
_FORCE_INLINE_ void operator*=(real_t p_s);
|
||||
_FORCE_INLINE_ void operator/=(real_t p_s);
|
||||
_FORCE_INLINE_ Quaternion operator+(const Quaternion &p_q2) const;
|
||||
_FORCE_INLINE_ Quaternion operator-(const Quaternion &p_q2) const;
|
||||
_FORCE_INLINE_ Quaternion operator-() const;
|
||||
_FORCE_INLINE_ Quaternion operator*(const real_t &s) const;
|
||||
_FORCE_INLINE_ Quaternion operator/(const real_t &s) const;
|
||||
_FORCE_INLINE_ Quaternion operator*(real_t p_s) const;
|
||||
_FORCE_INLINE_ Quaternion operator/(real_t p_s) const;
|
||||
|
||||
_FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const;
|
||||
_FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const;
|
||||
|
@ -128,8 +128,6 @@ struct _NO_DISCARD_ Quaternion {
|
|||
|
||||
Quaternion(const Vector3 &p_axis, real_t p_angle);
|
||||
|
||||
Quaternion(const Vector3 &p_euler);
|
||||
|
||||
Quaternion(const Quaternion &p_q) :
|
||||
x(p_q.x),
|
||||
y(p_q.y),
|
||||
|
@ -144,9 +142,9 @@ struct _NO_DISCARD_ Quaternion {
|
|||
w = p_q.w;
|
||||
}
|
||||
|
||||
Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc.
|
||||
Vector3 c = v0.cross(v1);
|
||||
real_t d = v0.dot(v1);
|
||||
Quaternion(const Vector3 &p_v0, const Vector3 &p_v1) { // Shortest arc.
|
||||
Vector3 c = p_v0.cross(p_v1);
|
||||
real_t d = p_v0.dot(p_v1);
|
||||
|
||||
if (d < -1.0f + (real_t)CMP_EPSILON) {
|
||||
x = 0;
|
||||
|
@ -187,25 +185,25 @@ void Quaternion::operator-=(const Quaternion &p_q) {
|
|||
w -= p_q.w;
|
||||
}
|
||||
|
||||
void Quaternion::operator*=(const real_t &s) {
|
||||
x *= s;
|
||||
y *= s;
|
||||
z *= s;
|
||||
w *= s;
|
||||
void Quaternion::operator*=(real_t p_s) {
|
||||
x *= p_s;
|
||||
y *= p_s;
|
||||
z *= p_s;
|
||||
w *= p_s;
|
||||
}
|
||||
|
||||
void Quaternion::operator/=(const real_t &s) {
|
||||
*this *= 1.0f / s;
|
||||
void Quaternion::operator/=(real_t p_s) {
|
||||
*this *= 1.0f / p_s;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator+(const Quaternion &q2) const {
|
||||
Quaternion Quaternion::operator+(const Quaternion &p_q2) const {
|
||||
const Quaternion &q1 = *this;
|
||||
return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
|
||||
return Quaternion(q1.x + p_q2.x, q1.y + p_q2.y, q1.z + p_q2.z, q1.w + p_q2.w);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator-(const Quaternion &q2) const {
|
||||
Quaternion Quaternion::operator-(const Quaternion &p_q2) const {
|
||||
const Quaternion &q1 = *this;
|
||||
return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
|
||||
return Quaternion(q1.x - p_q2.x, q1.y - p_q2.y, q1.z - p_q2.z, q1.w - p_q2.w);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator-() const {
|
||||
|
@ -213,12 +211,12 @@ Quaternion Quaternion::operator-() const {
|
|||
return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(const real_t &s) const {
|
||||
return Quaternion(x * s, y * s, z * s, w * s);
|
||||
Quaternion Quaternion::operator*(real_t p_s) const {
|
||||
return Quaternion(x * p_s, y * p_s, z * p_s, w * p_s);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator/(const real_t &s) const {
|
||||
return *this * (1.0f / s);
|
||||
Quaternion Quaternion::operator/(real_t p_s) const {
|
||||
return *this * (1.0f / p_s);
|
||||
}
|
||||
|
||||
bool Quaternion::operator==(const Quaternion &p_quaternion) const {
|
||||
|
@ -229,7 +227,7 @@ bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
|
|||
return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) {
|
||||
_FORCE_INLINE_ Quaternion operator*(real_t p_real, const Quaternion &p_quaternion) {
|
||||
return p_quaternion * p_real;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,28 +37,15 @@ namespace godot {
|
|||
|
||||
real_t Quaternion::angle_to(const Quaternion &p_to) const {
|
||||
real_t d = dot(p_to);
|
||||
return Math::acos(CLAMP(d * d * 2 - 1, -1, 1));
|
||||
// acos does clamping.
|
||||
return Math::acos(d * d * 2 - 1);
|
||||
}
|
||||
|
||||
// get_euler_xyz returns a vector containing the Euler angles in the format
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses XYZ convention (Z is the first rotation).
|
||||
Vector3 Quaternion::get_euler_xyz() const {
|
||||
Basis m(*this);
|
||||
return m.get_euler(EULER_ORDER_XYZ);
|
||||
}
|
||||
|
||||
// get_euler_yxz returns a vector containing the Euler angles in the format
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses YXZ convention (Z is the first rotation).
|
||||
Vector3 Quaternion::get_euler_yxz() const {
|
||||
Vector3 Quaternion::get_euler(EulerOrder p_order) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion " + operator String() + " must be normalized.");
|
||||
#endif
|
||||
Basis m(*this);
|
||||
return m.get_euler(EULER_ORDER_YXZ);
|
||||
return Basis(*this).get_euler(p_order);
|
||||
}
|
||||
|
||||
void Quaternion::operator*=(const Quaternion &p_q) {
|
||||
|
@ -103,7 +90,7 @@ bool Quaternion::is_normalized() const {
|
|||
|
||||
Quaternion Quaternion::inverse() const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion " + operator String() + " must be normalized.");
|
||||
#endif
|
||||
return Quaternion(-x, -y, -z, w);
|
||||
}
|
||||
|
@ -125,10 +112,10 @@ Quaternion Quaternion::exp() const {
|
|||
return Quaternion(src_v, theta);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
|
||||
Quaternion Quaternion::slerp(const Quaternion &p_to, real_t p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized.");
|
||||
#endif
|
||||
Quaternion to1;
|
||||
real_t omega, cosom, sinom, scale0, scale1;
|
||||
|
@ -166,10 +153,10 @@ Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) con
|
|||
scale0 * w + scale1 * to1.w);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
|
||||
Quaternion Quaternion::slerpni(const Quaternion &p_to, real_t p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion " + p_to.operator String() + " must be normalized.");
|
||||
#endif
|
||||
const Quaternion &from = *this;
|
||||
|
||||
|
@ -190,10 +177,10 @@ Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) c
|
|||
invFactor * from.w + newFactor * p_to.w);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
|
||||
Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized.");
|
||||
#endif
|
||||
Quaternion from_q = *this;
|
||||
Quaternion pre_q = p_pre_a;
|
||||
|
@ -236,15 +223,15 @@ Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const
|
|||
ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
|
||||
Quaternion q2 = to_q * ln.exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.slerp(q2, p_weight);
|
||||
}
|
||||
|
||||
Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight,
|
||||
const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
|
||||
Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, real_t p_weight,
|
||||
real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion " + operator String() + " must be normalized.");
|
||||
ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion " + p_b.operator String() + " must be normalized.");
|
||||
#endif
|
||||
Quaternion from_q = *this;
|
||||
Quaternion pre_q = p_pre_a;
|
||||
|
@ -287,7 +274,7 @@ Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b
|
|||
ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
|
||||
Quaternion q2 = to_q * ln.exp();
|
||||
|
||||
// To cancel error made by Expmap ambiguity, do blends.
|
||||
// To cancel error made by Expmap ambiguity, do blending.
|
||||
return q1.slerp(q2, p_weight);
|
||||
}
|
||||
|
||||
|
@ -309,7 +296,7 @@ real_t Quaternion::get_angle() const {
|
|||
|
||||
Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
|
||||
#ifdef MATH_CHECKS
|
||||
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
|
||||
ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized.");
|
||||
#endif
|
||||
real_t d = p_axis.length();
|
||||
if (d == 0) {
|
||||
|
@ -332,7 +319,7 @@ Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
|
|||
// (ax, ay, az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses YXZ convention (Z is the first rotation).
|
||||
Quaternion::Quaternion(const Vector3 &p_euler) {
|
||||
Quaternion Quaternion::from_euler(const Vector3 &p_euler) {
|
||||
real_t half_a1 = p_euler.y * 0.5f;
|
||||
real_t half_a2 = p_euler.x * 0.5f;
|
||||
real_t half_a3 = p_euler.z * 0.5f;
|
||||
|
@ -348,10 +335,11 @@ Quaternion::Quaternion(const Vector3 &p_euler) {
|
|||
real_t cos_a3 = Math::cos(half_a3);
|
||||
real_t sin_a3 = Math::sin(half_a3);
|
||||
|
||||
x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3;
|
||||
y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3;
|
||||
z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3;
|
||||
w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3;
|
||||
return Quaternion(
|
||||
sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
|
||||
sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
|
||||
-sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
|
||||
sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
|
Loading…
Reference in New Issue