Finished Quat.h

pull/7/head
Karroffel 2017-03-03 03:39:56 +01:00
parent 5d543692eb
commit 15515d10d4
2 changed files with 193 additions and 22 deletions

View File

@ -91,6 +91,31 @@ public:
} }
#undef cofac #undef cofac
bool isequal_approx(const Basis& a, const Basis& b) const {
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
if ((::fabs(a.elements[i][j]-b.elements[i][j]) < CMP_EPSILON) == false)
return false;
}
}
return true;
}
bool is_orthogonal() const
{
Basis id;
Basis m = (*this)*transposed();
return isequal_approx(id,m);
}
bool is_rotation() const
{
return ::fabs(determinant()-1) < CMP_EPSILON && is_orthogonal();
}
void transpose() void transpose()
{ {
@ -141,8 +166,6 @@ public:
return Basis(p_axis, p_phi) * (*this); return Basis(p_axis, p_phi) * (*this);
} }
Vector3 get_rotation() const; // need?!
void scale( const Vector3& p_scale ) void scale( const Vector3& p_scale )
{ {
elements[0][0]*=p_scale.x; elements[0][0]*=p_scale.x;
@ -244,8 +267,6 @@ public:
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
} }
bool isequal_approx(const Basis& a, const Basis& b) const; // need?
bool operator==(const Basis& p_matrix) const bool operator==(const Basis& p_matrix) const
{ {
for (int i=0;i<3;i++) { for (int i=0;i<3;i++) {
@ -345,10 +366,13 @@ public:
void set_orthogonal_index(int p_index); // down below void set_orthogonal_index(int p_index); // down below
bool is_orthogonal() const; // need?
bool is_rotation() const; // need?
operator String() const; operator String() const
{
String s;
// @Todo
return s;
}
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const; void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;

View File

@ -5,6 +5,8 @@
#include "Vector3.h" #include "Vector3.h"
// #include "Basis.h"
namespace godot { namespace godot {
#define CMP_EPSILON 0.00001 #define CMP_EPSILON 0.00001
@ -16,17 +18,127 @@ public:
real_t x,y,z,w; real_t x,y,z,w;
real_t length_squared() const; real_t length_squared() const; // down below
real_t length() const; real_t length() const
void normalize(); {
Quat normalized() const; return ::sqrt(length_squared());
Quat inverse() const; }
real_t dot(const Quat& q) const;
void set_euler(const Vector3& p_euler); void normalize()
Vector3 get_euler() const; {
Quat slerp(const Quat& q, const real_t& t) const; *this /= length();
Quat slerpni(const Quat& q, const real_t& t) const; }
Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const;
Quat normalized() const
{
return *this / length();
}
Quat inverse() const
{
return Quat( -x, -y, -z, w );
}
real_t dot(const Quat& q) const; // down below
void set_euler(const Vector3& p_euler)
{
real_t half_a1 = p_euler.x * 0.5;
real_t half_a2 = p_euler.y * 0.5;
real_t half_a3 = p_euler.z * 0.5;
// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
// a3 is the angle of the first rotation, following the notation in this reference.
real_t cos_a1 = ::cos(half_a1);
real_t sin_a1 = ::sin(half_a1);
real_t cos_a2 = ::cos(half_a2);
real_t sin_a2 = ::sin(half_a2);
real_t cos_a3 = ::cos(half_a3);
real_t sin_a3 = ::sin(half_a3);
set(sin_a1*cos_a2*cos_a3 + sin_a2*sin_a3*cos_a1,
-sin_a1*sin_a3*cos_a2 + sin_a2*cos_a1*cos_a3,
sin_a1*sin_a2*cos_a3 + sin_a3*cos_a1*cos_a2,
-sin_a1*sin_a2*sin_a3 + cos_a1*cos_a2*cos_a3);
}
Vector3 get_euler() const; // down below
Quat slerp(const Quat& q, const real_t& t) const {
Quat to1;
real_t omega, cosom, sinom, scale0, scale1;
// calc cosine
cosom = dot(q);
// adjust signs (if necessary)
if ( cosom <0.0 ) {
cosom = -cosom;
to1.x = - q.x;
to1.y = - q.y;
to1.z = - q.z;
to1.w = - q.w;
} else {
to1.x = q.x;
to1.y = q.y;
to1.z = q.z;
to1.w = q.w;
}
// calculate coefficients
if ( (1.0 - cosom) > CMP_EPSILON ) {
// standard case (slerp)
omega = ::acos(cosom);
sinom = ::sin(omega);
scale0 = ::sin((1.0 - t) * omega) / sinom;
scale1 = ::sin(t * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0 - t;
scale1 = t;
}
// calculate final values
return Quat(
scale0 * x + scale1 * to1.x,
scale0 * y + scale1 * to1.y,
scale0 * z + scale1 * to1.z,
scale0 * w + scale1 * to1.w
);
}
Quat slerpni(const Quat& q, const real_t& t) const {
const Quat &from = *this;
real_t dot = from.dot(q);
if (::fabs(dot) > 0.9999) return from;
real_t theta = ::acos(dot),
sinT = 1.0 / ::sin(theta),
newFactor = ::sin(t * theta) * sinT,
invFactor = ::sin((1.0 - t) * theta) * sinT;
return Quat(invFactor * from.x + newFactor * q.x,
invFactor * from.y + newFactor * q.y,
invFactor * from.z + newFactor * q.z,
invFactor * from.w + newFactor * q.w);
}
Quat cubic_slerp(const Quat& q, const Quat& prep, const Quat& postq,const real_t& t) const
{
//the only way to do slerp :|
real_t t2 = (1.0-t)*t*2;
Quat sp = this->slerp(q,t);
Quat sq = prep.slerpni(postq,t);
return sp.slerpni(sq,t2);
}
void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const { void get_axis_and_angle(Vector3& r_axis, real_t &r_angle) const {
r_angle = 2 * ::acos(w); r_angle = 2 * ::acos(w);
@ -35,8 +147,8 @@ public:
r_axis.z = z / ::sqrt(1-w*w); r_axis.z = z / ::sqrt(1-w*w);
} }
void operator*=(const Quat& q); void operator*=(const Quat& q); // down below
Quat operator*(const Quat& q) const; Quat operator*(const Quat& q) const; // down below
@ -55,6 +167,7 @@ public:
return Vector3(q.x,q.y,q.z); return Vector3(q.x,q.y,q.z);
} }
// everything's down
void operator+=(const Quat& q); void operator+=(const Quat& q);
void operator-=(const Quat& q); void operator-=(const Quat& q);
void operator*=(const real_t& s); void operator*=(const real_t& s);
@ -69,7 +182,10 @@ public:
bool operator==(const Quat& p_quat) const; bool operator==(const Quat& p_quat) const;
bool operator!=(const Quat& p_quat) const; bool operator!=(const Quat& p_quat) const;
operator String() const; operator String() const
{
return String(); // @Todo
}
inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) { inline void set( real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w; x=p_x; y=p_y; z=p_z; w=p_w;
@ -77,7 +193,19 @@ public:
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) { inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
x=p_x; y=p_y; z=p_z; w=p_w; x=p_x; y=p_y; z=p_z; w=p_w;
} }
Quat(const Vector3& axis, const real_t& angle); Quat(const Vector3& axis, const real_t& angle)
{
real_t d = axis.length();
if (d==0)
set(0,0,0,0);
else {
real_t sin_angle = ::sin(angle * 0.5);
real_t cos_angle = ::cos(angle * 0.5);
real_t s = sin_angle / d;
set(axis.x * s, axis.y * s, axis.z * s,
cos_angle);
}
}
Quat(const Vector3& v0, const Vector3& v1) // shortest arc Quat(const Vector3& v0, const Vector3& v1) // shortest arc
{ {
@ -143,6 +271,13 @@ Quat Quat::operator-(const Quat& q2) const {
return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w); return Quat( q1.x-q2.x, q1.y-q2.y, q1.z-q2.z, q1.w-q2.w);
} }
Quat Quat::operator*(const Quat& q2) const {
Quat q1 = *this;
q1 *= q2;
return q1;
}
Quat Quat::operator-() const { Quat Quat::operator-() const {
const Quat& q2 = *this; const Quat& q2 = *this;
return Quat( -q2.x, -q2.y, -q2.z, -q2.w); return Quat( -q2.x, -q2.y, -q2.z, -q2.w);
@ -166,6 +301,18 @@ bool Quat::operator!=(const Quat& p_quat) const {
} }
}
#include "Basis.h"
namespace godot {
Vector3 Quat::get_euler() const
{
Basis m(*this);
return m.get_euler();
}
} }
#endif // QUAT_H #endif // QUAT_H