409 lines
9.4 KiB
C++
409 lines
9.4 KiB
C++
|
#ifndef GODOT_VECTOR3_HPP
|
||
|
#define GODOT_VECTOR3_HPP
|
||
|
|
||
|
#include <godot_cpp/core/math.hpp>
|
||
|
#include <godot_cpp/variant/string.hpp>
|
||
|
|
||
|
namespace godot {
|
||
|
|
||
|
class Basis;
|
||
|
class Vector3i;
|
||
|
|
||
|
class Vector3 {
|
||
|
public:
|
||
|
_FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; }
|
||
|
|
||
|
enum Axis {
|
||
|
AXIS_X,
|
||
|
AXIS_Y,
|
||
|
AXIS_Z,
|
||
|
};
|
||
|
|
||
|
union {
|
||
|
struct {
|
||
|
real_t x;
|
||
|
real_t y;
|
||
|
real_t z;
|
||
|
};
|
||
|
|
||
|
real_t coord[3] = { 0 };
|
||
|
};
|
||
|
|
||
|
inline const real_t &operator[](int p_axis) const {
|
||
|
return coord[p_axis];
|
||
|
}
|
||
|
|
||
|
inline real_t &operator[](int p_axis) {
|
||
|
return coord[p_axis];
|
||
|
}
|
||
|
|
||
|
void set_axis(int p_axis, real_t p_value);
|
||
|
real_t get_axis(int p_axis) const;
|
||
|
|
||
|
int min_axis() const;
|
||
|
int max_axis() const;
|
||
|
|
||
|
inline real_t length() const;
|
||
|
inline real_t length_squared() const;
|
||
|
|
||
|
inline void normalize();
|
||
|
inline Vector3 normalized() const;
|
||
|
inline bool is_normalized() const;
|
||
|
inline Vector3 inverse() const;
|
||
|
|
||
|
inline void zero();
|
||
|
|
||
|
void snap(Vector3 p_val);
|
||
|
Vector3 snapped(Vector3 p_val) const;
|
||
|
|
||
|
void rotate(const Vector3 &p_axis, real_t p_phi);
|
||
|
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
|
||
|
|
||
|
/* Static Methods between 2 vector3s */
|
||
|
|
||
|
inline Vector3 lerp(const Vector3 &p_to, real_t p_weight) const;
|
||
|
inline Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
|
||
|
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
|
||
|
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
|
||
|
|
||
|
inline Vector3 cross(const Vector3 &p_b) const;
|
||
|
inline real_t dot(const Vector3 &p_b) const;
|
||
|
Basis outer(const Vector3 &p_b) const;
|
||
|
Basis to_diagonal_matrix() const;
|
||
|
|
||
|
inline Vector3 abs() const;
|
||
|
inline Vector3 floor() const;
|
||
|
inline Vector3 sign() const;
|
||
|
inline Vector3 ceil() const;
|
||
|
inline Vector3 round() const;
|
||
|
|
||
|
inline real_t distance_to(const Vector3 &p_to) const;
|
||
|
inline real_t distance_squared_to(const Vector3 &p_to) const;
|
||
|
|
||
|
inline Vector3 posmod(const real_t p_mod) const;
|
||
|
inline Vector3 posmodv(const Vector3 &p_modv) const;
|
||
|
inline Vector3 project(const Vector3 &p_to) const;
|
||
|
|
||
|
inline real_t angle_to(const Vector3 &p_to) const;
|
||
|
inline Vector3 direction_to(const Vector3 &p_to) const;
|
||
|
|
||
|
inline Vector3 slide(const Vector3 &p_normal) const;
|
||
|
inline Vector3 bounce(const Vector3 &p_normal) const;
|
||
|
inline Vector3 reflect(const Vector3 &p_normal) const;
|
||
|
|
||
|
bool is_equal_approx(const Vector3 &p_v) const;
|
||
|
|
||
|
/* Operators */
|
||
|
|
||
|
inline Vector3 &operator+=(const Vector3 &p_v);
|
||
|
inline Vector3 operator+(const Vector3 &p_v) const;
|
||
|
inline Vector3 &operator-=(const Vector3 &p_v);
|
||
|
inline Vector3 operator-(const Vector3 &p_v) const;
|
||
|
inline Vector3 &operator*=(const Vector3 &p_v);
|
||
|
inline Vector3 operator*(const Vector3 &p_v) const;
|
||
|
inline Vector3 &operator/=(const Vector3 &p_v);
|
||
|
inline Vector3 operator/(const Vector3 &p_v) const;
|
||
|
|
||
|
inline Vector3 &operator*=(real_t p_scalar);
|
||
|
inline Vector3 operator*(real_t p_scalar) const;
|
||
|
inline Vector3 &operator/=(real_t p_scalar);
|
||
|
inline Vector3 operator/(real_t p_scalar) const;
|
||
|
|
||
|
inline Vector3 operator-() const;
|
||
|
|
||
|
inline bool operator==(const Vector3 &p_v) const;
|
||
|
inline bool operator!=(const Vector3 &p_v) const;
|
||
|
inline bool operator<(const Vector3 &p_v) const;
|
||
|
inline bool operator<=(const Vector3 &p_v) const;
|
||
|
inline bool operator>(const Vector3 &p_v) const;
|
||
|
inline bool operator>=(const Vector3 &p_v) const;
|
||
|
|
||
|
operator String() const;
|
||
|
operator Vector3i() const;
|
||
|
|
||
|
inline Vector3() {}
|
||
|
inline Vector3(real_t p_x, real_t p_y, real_t p_z) {
|
||
|
x = p_x;
|
||
|
y = p_y;
|
||
|
z = p_z;
|
||
|
}
|
||
|
Vector3(const Vector3i &p_ivec);
|
||
|
};
|
||
|
|
||
|
Vector3 Vector3::cross(const Vector3 &p_b) const {
|
||
|
Vector3 ret(
|
||
|
(y * p_b.z) - (z * p_b.y),
|
||
|
(z * p_b.x) - (x * p_b.z),
|
||
|
(x * p_b.y) - (y * p_b.x));
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
real_t Vector3::dot(const Vector3 &p_b) const {
|
||
|
return x * p_b.x + y * p_b.y + z * p_b.z;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::abs() const {
|
||
|
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::sign() const {
|
||
|
return Vector3(Math::sign(x), Math::sign(y), Math::sign(z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::floor() const {
|
||
|
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::ceil() const {
|
||
|
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::round() const {
|
||
|
return Vector3(Math::round(x), Math::round(y), Math::round(z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const {
|
||
|
return Vector3(
|
||
|
x + (p_weight * (p_to.x - x)),
|
||
|
y + (p_weight * (p_to.y - y)),
|
||
|
z + (p_weight * (p_to.z - z)));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const {
|
||
|
real_t theta = angle_to(p_to);
|
||
|
return rotated(cross(p_to).normalized(), theta * p_weight);
|
||
|
}
|
||
|
|
||
|
real_t Vector3::distance_to(const Vector3 &p_to) const {
|
||
|
return (p_to - *this).length();
|
||
|
}
|
||
|
|
||
|
real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
|
||
|
return (p_to - *this).length_squared();
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::posmod(const real_t p_mod) const {
|
||
|
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
|
||
|
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::project(const Vector3 &p_to) const {
|
||
|
return p_to * (dot(p_to) / p_to.length_squared());
|
||
|
}
|
||
|
|
||
|
real_t Vector3::angle_to(const Vector3 &p_to) const {
|
||
|
return Math::atan2(cross(p_to).length(), dot(p_to));
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
|
||
|
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
|
||
|
ret.normalize();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* Operators */
|
||
|
|
||
|
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
|
||
|
x += p_v.x;
|
||
|
y += p_v.y;
|
||
|
z += p_v.z;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator+(const Vector3 &p_v) const {
|
||
|
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
|
||
|
}
|
||
|
|
||
|
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
|
||
|
x -= p_v.x;
|
||
|
y -= p_v.y;
|
||
|
z -= p_v.z;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator-(const Vector3 &p_v) const {
|
||
|
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
|
||
|
}
|
||
|
|
||
|
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
|
||
|
x *= p_v.x;
|
||
|
y *= p_v.y;
|
||
|
z *= p_v.z;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator*(const Vector3 &p_v) const {
|
||
|
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
|
||
|
}
|
||
|
|
||
|
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
|
||
|
x /= p_v.x;
|
||
|
y /= p_v.y;
|
||
|
z /= p_v.z;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator/(const Vector3 &p_v) const {
|
||
|
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
|
||
|
}
|
||
|
|
||
|
Vector3 &Vector3::operator*=(real_t p_scalar) {
|
||
|
x *= p_scalar;
|
||
|
y *= p_scalar;
|
||
|
z *= p_scalar;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
|
||
|
return p_vec * p_scalar;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator*(real_t p_scalar) const {
|
||
|
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
|
||
|
}
|
||
|
|
||
|
Vector3 &Vector3::operator/=(real_t p_scalar) {
|
||
|
x /= p_scalar;
|
||
|
y /= p_scalar;
|
||
|
z /= p_scalar;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator/(real_t p_scalar) const {
|
||
|
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::operator-() const {
|
||
|
return Vector3(-x, -y, -z);
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator==(const Vector3 &p_v) const {
|
||
|
return x == p_v.x && y == p_v.y && z == p_v.z;
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator!=(const Vector3 &p_v) const {
|
||
|
return x != p_v.x || y != p_v.y || z != p_v.z;
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator<(const Vector3 &p_v) const {
|
||
|
if (x == p_v.x) {
|
||
|
if (y == p_v.y) {
|
||
|
return z < p_v.z;
|
||
|
}
|
||
|
return y < p_v.y;
|
||
|
}
|
||
|
return x < p_v.x;
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator>(const Vector3 &p_v) const {
|
||
|
if (x == p_v.x) {
|
||
|
if (y == p_v.y) {
|
||
|
return z > p_v.z;
|
||
|
}
|
||
|
return y > p_v.y;
|
||
|
}
|
||
|
return x > p_v.x;
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator<=(const Vector3 &p_v) const {
|
||
|
if (x == p_v.x) {
|
||
|
if (y == p_v.y) {
|
||
|
return z <= p_v.z;
|
||
|
}
|
||
|
return y < p_v.y;
|
||
|
}
|
||
|
return x < p_v.x;
|
||
|
}
|
||
|
|
||
|
bool Vector3::operator>=(const Vector3 &p_v) const {
|
||
|
if (x == p_v.x) {
|
||
|
if (y == p_v.y) {
|
||
|
return z >= p_v.z;
|
||
|
}
|
||
|
return y > p_v.y;
|
||
|
}
|
||
|
return x > p_v.x;
|
||
|
}
|
||
|
|
||
|
inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
|
||
|
return p_a.cross(p_b);
|
||
|
}
|
||
|
|
||
|
inline real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
|
||
|
return p_a.dot(p_b);
|
||
|
}
|
||
|
|
||
|
real_t Vector3::length() const {
|
||
|
real_t x2 = x * x;
|
||
|
real_t y2 = y * y;
|
||
|
real_t z2 = z * z;
|
||
|
|
||
|
return Math::sqrt(x2 + y2 + z2);
|
||
|
}
|
||
|
|
||
|
real_t Vector3::length_squared() const {
|
||
|
real_t x2 = x * x;
|
||
|
real_t y2 = y * y;
|
||
|
real_t z2 = z * z;
|
||
|
|
||
|
return x2 + y2 + z2;
|
||
|
}
|
||
|
|
||
|
void Vector3::normalize() {
|
||
|
real_t lengthsq = length_squared();
|
||
|
if (lengthsq == 0) {
|
||
|
x = y = z = 0;
|
||
|
} else {
|
||
|
real_t length = Math::sqrt(lengthsq);
|
||
|
x /= length;
|
||
|
y /= length;
|
||
|
z /= length;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::normalized() const {
|
||
|
Vector3 v = *this;
|
||
|
v.normalize();
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
bool Vector3::is_normalized() const {
|
||
|
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
||
|
return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON);
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::inverse() const {
|
||
|
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
|
||
|
}
|
||
|
|
||
|
void Vector3::zero() {
|
||
|
x = y = z = 0;
|
||
|
}
|
||
|
|
||
|
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
||
|
Vector3 Vector3::slide(const Vector3 &p_normal) const {
|
||
|
#ifdef MATH_CHECKS
|
||
|
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
|
||
|
#endif
|
||
|
return *this - p_normal * this->dot(p_normal);
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
|
||
|
return -reflect(p_normal);
|
||
|
}
|
||
|
|
||
|
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
|
||
|
#ifdef MATH_CHECKS
|
||
|
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
|
||
|
#endif
|
||
|
return 2.0 * p_normal * this->dot(p_normal) - *this;
|
||
|
}
|
||
|
|
||
|
} // namespace godot
|
||
|
|
||
|
#endif // GODOT_VECTOR3_HPP
|