2021-09-08 18:11:12 +00:00
|
|
|
/*************************************************************************/
|
|
|
|
/* vector2.hpp */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/*************************************************************************/
|
|
|
|
|
2021-09-01 03:11:10 +00:00
|
|
|
#ifndef GODOT_VECTOR2_HPP
|
|
|
|
#define GODOT_VECTOR2_HPP
|
|
|
|
|
|
|
|
#include <godot_cpp/core/math.hpp>
|
|
|
|
#include <godot_cpp/variant/string.hpp>
|
|
|
|
|
|
|
|
namespace godot {
|
|
|
|
|
|
|
|
class Vector2i;
|
|
|
|
|
|
|
|
class Vector2 {
|
|
|
|
public:
|
|
|
|
_FORCE_INLINE_ GDNativeTypePtr ptr() const { return (void *)this; }
|
|
|
|
|
|
|
|
enum Axis {
|
|
|
|
AXIS_X,
|
|
|
|
AXIS_Y,
|
|
|
|
};
|
|
|
|
|
|
|
|
union {
|
|
|
|
real_t x = 0;
|
|
|
|
real_t width;
|
|
|
|
};
|
|
|
|
union {
|
|
|
|
real_t y = 0;
|
|
|
|
real_t height;
|
|
|
|
};
|
|
|
|
|
|
|
|
inline real_t &operator[](int p_idx) {
|
|
|
|
return p_idx ? y : x;
|
|
|
|
}
|
|
|
|
inline const real_t &operator[](int p_idx) const {
|
|
|
|
return p_idx ? y : x;
|
|
|
|
}
|
|
|
|
|
|
|
|
void normalize();
|
|
|
|
Vector2 normalized() const;
|
|
|
|
bool is_normalized() const;
|
|
|
|
|
|
|
|
real_t length() const;
|
|
|
|
real_t length_squared() const;
|
|
|
|
|
|
|
|
Vector2 min(const Vector2 &p_vector2) const {
|
|
|
|
return Vector2(Math::min(x, p_vector2.x), Math::min(y, p_vector2.y));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 max(const Vector2 &p_vector2) const {
|
|
|
|
return Vector2(Math::max(x, p_vector2.x), Math::max(y, p_vector2.y));
|
|
|
|
}
|
|
|
|
|
|
|
|
real_t distance_to(const Vector2 &p_vector2) const;
|
|
|
|
real_t distance_squared_to(const Vector2 &p_vector2) const;
|
|
|
|
real_t angle_to(const Vector2 &p_vector2) const;
|
|
|
|
real_t angle_to_point(const Vector2 &p_vector2) const;
|
|
|
|
inline Vector2 direction_to(const Vector2 &p_to) const;
|
|
|
|
|
|
|
|
real_t dot(const Vector2 &p_other) const;
|
|
|
|
real_t cross(const Vector2 &p_other) const;
|
|
|
|
Vector2 posmod(const real_t p_mod) const;
|
|
|
|
Vector2 posmodv(const Vector2 &p_modv) const;
|
|
|
|
Vector2 project(const Vector2 &p_to) const;
|
|
|
|
|
|
|
|
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
|
|
|
|
|
|
|
|
Vector2 clamped(real_t p_len) const;
|
|
|
|
|
|
|
|
inline Vector2 lerp(const Vector2 &p_to, real_t p_weight) const;
|
|
|
|
inline Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
|
|
|
|
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
|
|
|
|
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
|
|
|
|
|
|
|
|
Vector2 slide(const Vector2 &p_normal) const;
|
|
|
|
Vector2 bounce(const Vector2 &p_normal) const;
|
|
|
|
Vector2 reflect(const Vector2 &p_normal) const;
|
|
|
|
|
|
|
|
bool is_equal_approx(const Vector2 &p_v) const;
|
|
|
|
|
|
|
|
Vector2 operator+(const Vector2 &p_v) const;
|
|
|
|
void operator+=(const Vector2 &p_v);
|
|
|
|
Vector2 operator-(const Vector2 &p_v) const;
|
|
|
|
void operator-=(const Vector2 &p_v);
|
|
|
|
Vector2 operator*(const Vector2 &p_v1) const;
|
|
|
|
|
|
|
|
Vector2 operator*(const real_t &rvalue) const;
|
|
|
|
void operator*=(const real_t &rvalue);
|
|
|
|
void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
|
|
|
|
|
|
|
|
Vector2 operator/(const Vector2 &p_v1) const;
|
|
|
|
|
|
|
|
Vector2 operator/(const real_t &rvalue) const;
|
|
|
|
|
|
|
|
void operator/=(const real_t &rvalue);
|
|
|
|
void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; }
|
|
|
|
|
|
|
|
Vector2 operator-() const;
|
|
|
|
|
|
|
|
bool operator==(const Vector2 &p_vec2) const;
|
|
|
|
bool operator!=(const Vector2 &p_vec2) const;
|
|
|
|
|
|
|
|
bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); }
|
|
|
|
bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); }
|
|
|
|
bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); }
|
|
|
|
bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
|
|
|
|
|
|
|
|
real_t angle() const;
|
|
|
|
|
|
|
|
inline Vector2 abs() const {
|
|
|
|
return Vector2(Math::abs(x), Math::abs(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 rotated(real_t p_by) const;
|
|
|
|
Vector2 orthogonal() const {
|
|
|
|
return Vector2(y, -x);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 sign() const;
|
|
|
|
Vector2 floor() const;
|
|
|
|
Vector2 ceil() const;
|
|
|
|
Vector2 round() const;
|
|
|
|
Vector2 snapped(const Vector2 &p_by) const;
|
|
|
|
real_t aspect() const { return width / height; }
|
|
|
|
|
|
|
|
operator String() const;
|
2022-02-07 09:21:36 +00:00
|
|
|
operator Vector2i() const;
|
2021-09-01 03:11:10 +00:00
|
|
|
|
|
|
|
inline Vector2() {}
|
|
|
|
inline Vector2(real_t p_x, real_t p_y) {
|
|
|
|
x = p_x;
|
|
|
|
y = p_y;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
inline Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
|
|
|
|
return p_vec - *this * (dot(p_vec) - p_d);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 operator*(float p_scalar, const Vector2 &p_vec) {
|
2021-11-12 10:03:29 +00:00
|
|
|
return p_vec * (real_t)p_scalar;
|
2021-09-01 03:11:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 operator*(double p_scalar, const Vector2 &p_vec) {
|
2021-11-12 10:03:29 +00:00
|
|
|
return p_vec * (real_t)p_scalar;
|
2021-09-01 03:11:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) {
|
2021-11-12 10:03:29 +00:00
|
|
|
return p_vec * (real_t)p_scalar;
|
2021-09-01 03:11:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) {
|
2021-11-12 10:03:29 +00:00
|
|
|
return p_vec * (real_t)p_scalar;
|
2021-09-01 03:11:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator+(const Vector2 &p_v) const {
|
|
|
|
return Vector2(x + p_v.x, y + p_v.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Vector2::operator+=(const Vector2 &p_v) {
|
|
|
|
x += p_v.x;
|
|
|
|
y += p_v.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator-(const Vector2 &p_v) const {
|
|
|
|
return Vector2(x - p_v.x, y - p_v.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Vector2::operator-=(const Vector2 &p_v) {
|
|
|
|
x -= p_v.x;
|
|
|
|
y -= p_v.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator*(const Vector2 &p_v1) const {
|
|
|
|
return Vector2(x * p_v1.x, y * p_v1.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator*(const real_t &rvalue) const {
|
|
|
|
return Vector2(x * rvalue, y * rvalue);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Vector2::operator*=(const real_t &rvalue) {
|
|
|
|
x *= rvalue;
|
|
|
|
y *= rvalue;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator/(const Vector2 &p_v1) const {
|
|
|
|
return Vector2(x / p_v1.x, y / p_v1.y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator/(const real_t &rvalue) const {
|
|
|
|
return Vector2(x / rvalue, y / rvalue);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void Vector2::operator/=(const real_t &rvalue) {
|
|
|
|
x /= rvalue;
|
|
|
|
y /= rvalue;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Vector2 Vector2::operator-() const {
|
|
|
|
return Vector2(-x, -y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Vector2::operator==(const Vector2 &p_vec2) const {
|
|
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool Vector2::operator!=(const Vector2 &p_vec2) const {
|
|
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
|
|
|
|
Vector2 res = *this;
|
|
|
|
|
|
|
|
res.x += (p_weight * (p_to.x - x));
|
|
|
|
res.y += (p_weight * (p_to.y - y));
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const {
|
|
|
|
#ifdef MATH_CHECKS
|
|
|
|
ERR_FAIL_COND_V(!is_normalized(), Vector2());
|
|
|
|
#endif
|
|
|
|
real_t theta = angle_to(p_to);
|
|
|
|
return rotated(theta * p_weight);
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 Vector2::direction_to(const Vector2 &p_to) const {
|
|
|
|
Vector2 ret(p_to.x - x, p_to.y - y);
|
|
|
|
ret.normalize();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef Vector2 Size2;
|
|
|
|
typedef Vector2 Point2;
|
|
|
|
|
|
|
|
} // namespace godot
|
|
|
|
|
|
|
|
#endif // GODOT_VECTOR2_HPP
|