godot-cpp/include/core/Transform2D.hpp

95 lines
3.3 KiB
C++
Raw Normal View History

#ifndef TRANSFORM2D_H
#define TRANSFORM2D_H
2017-03-06 07:49:24 +00:00
#include "Vector2.hpp"
namespace godot {
typedef Vector2 Size2;
class Rect2;
struct Transform2D {
// Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper":
// M = (elements[0][0] elements[1][0])
// (elements[0][1] elements[1][1])
// This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i].
// Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here.
// This requires additional care when working with explicit indices.
// See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading.
// Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down,
// and angle is measure from +X to +Y in a clockwise-fashion.
Vector2 elements[3];
inline real_t tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; }
inline real_t tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; }
inline const Vector2& operator[](int p_idx) const { return elements[p_idx]; }
inline Vector2& operator[](int p_idx) { return elements[p_idx]; }
inline Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; }
inline void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; }
void invert();
Transform2D inverse() const;
void affine_invert();
Transform2D affine_inverse() const;
void set_rotation(real_t p_phi);
real_t get_rotation() const;
void set_rotation_and_scale(real_t p_phi,const Size2& p_scale);
void rotate(real_t p_phi);
void scale(const Size2& p_scale);
void scale_basis(const Size2& p_scale);
void translate( real_t p_tx, real_t p_ty);
void translate( const Vector2& p_translation );
real_t basis_determinant() const;
Size2 get_scale() const;
inline const Vector2& get_origin() const { return elements[2]; }
inline void set_origin(const Vector2& p_origin) { elements[2]=p_origin; }
Transform2D scaled(const Size2& p_scale) const;
Transform2D basis_scaled(const Size2& p_scale) const;
Transform2D translated(const Vector2& p_offset) const;
Transform2D rotated(real_t p_phi) const;
Transform2D untranslated() const;
void orthonormalize();
Transform2D orthonormalized() const;
bool operator==(const Transform2D& p_transform) const;
bool operator!=(const Transform2D& p_transform) const;
void operator*=(const Transform2D& p_transform);
Transform2D operator*(const Transform2D& p_transform) const;
Transform2D interpolate_with(const Transform2D& p_transform, real_t p_c) const;
Vector2 basis_xform(const Vector2& p_vec) const;
Vector2 basis_xform_inv(const Vector2& p_vec) const;
Vector2 xform(const Vector2& p_vec) const;
Vector2 xform_inv(const Vector2& p_vec) const;
Rect2 xform(const Rect2& p_vec) const;
Rect2 xform_inv(const Rect2& p_vec) const;
operator String() const;
Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy);
Transform2D(real_t p_rot, const Vector2& p_pos);
inline Transform2D() { elements[0][0]=1.0; elements[1][1]=1.0; }
};
}
#endif // TRANSFORM2D_H