645 lines
15 KiB
C
645 lines
15 KiB
C
|
#ifndef BASIS_H
|
||
|
#define BASIS_H
|
||
|
|
||
|
#include "Vector3.h"
|
||
|
|
||
|
#include <algorithm>
|
||
|
|
||
|
typedef float real_t; // @Todo move this to a global Godot.h
|
||
|
|
||
|
#define CMP_EPSILON 0.00001 // @Todo move this somewhere more global
|
||
|
#define CMP_EPSILON2 (CMP_EPSILON*CMP_EPSILON) // @Todo same as above
|
||
|
#define Math_PI 3.14159265358979323846 // I feel like I'm talking to myself
|
||
|
|
||
|
|
||
|
|
||
|
namespace godot {
|
||
|
|
||
|
class Quat;
|
||
|
|
||
|
class Basis {
|
||
|
public:
|
||
|
|
||
|
Vector3 elements[3];
|
||
|
|
||
|
Basis(const Quat& p_quat); // euler
|
||
|
Basis(const Vector3& p_euler); // euler
|
||
|
Basis(const Vector3& p_axis, real_t p_phi);
|
||
|
|
||
|
Basis(const Vector3& row0, const Vector3& row1, const Vector3& row2)
|
||
|
{
|
||
|
elements[0]=row0;
|
||
|
elements[1]=row1;
|
||
|
elements[2]=row2;
|
||
|
}
|
||
|
|
||
|
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
||
|
|
||
|
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
|
||
|
}
|
||
|
|
||
|
Basis() {
|
||
|
|
||
|
elements[0][0]=1;
|
||
|
elements[0][1]=0;
|
||
|
elements[0][2]=0;
|
||
|
elements[1][0]=0;
|
||
|
elements[1][1]=1;
|
||
|
elements[1][2]=0;
|
||
|
elements[2][0]=0;
|
||
|
elements[2][1]=0;
|
||
|
elements[2][2]=1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
const Vector3& operator[](int axis) const {
|
||
|
|
||
|
return elements[axis];
|
||
|
}
|
||
|
Vector3& operator[](int axis) {
|
||
|
|
||
|
return elements[axis];
|
||
|
}
|
||
|
|
||
|
#define cofac(row1,col1, row2, col2)\
|
||
|
(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
|
||
|
|
||
|
void invert()
|
||
|
{
|
||
|
real_t co[3]={
|
||
|
cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
|
||
|
};
|
||
|
real_t det = elements[0][0] * co[0]+
|
||
|
elements[0][1] * co[1]+
|
||
|
elements[0][2] * co[2];
|
||
|
|
||
|
if ( det != 0 ) {
|
||
|
// WTF
|
||
|
__builtin_trap(); // WTF WTF WTF
|
||
|
|
||
|
// I shouldn't do this
|
||
|
// @Todo @Fixme @Todo @Todo
|
||
|
}
|
||
|
real_t s = 1.0/det;
|
||
|
|
||
|
set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
|
||
|
co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
|
||
|
co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
|
||
|
}
|
||
|
#undef cofac
|
||
|
|
||
|
|
||
|
void transpose()
|
||
|
{
|
||
|
std::swap(elements[0][1],elements[1][0]);
|
||
|
std::swap(elements[0][2],elements[2][0]);
|
||
|
std::swap(elements[1][2],elements[2][1]);
|
||
|
}
|
||
|
|
||
|
Basis inverse() const
|
||
|
{
|
||
|
Basis b = *this;
|
||
|
b.invert();
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
Basis transposed() const
|
||
|
{
|
||
|
Basis b = *this;
|
||
|
b.transpose();
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
real_t determinant() const
|
||
|
{
|
||
|
return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) -
|
||
|
elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) +
|
||
|
elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]);
|
||
|
}
|
||
|
|
||
|
Vector3 get_axis(int p_axis) const {
|
||
|
// get actual basis axis (elements is transposed for performance)
|
||
|
return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] );
|
||
|
}
|
||
|
void set_axis(int p_axis, const Vector3& p_value) {
|
||
|
// get actual basis axis (elements is transposed for performance)
|
||
|
elements[0][p_axis]=p_value.x;
|
||
|
elements[1][p_axis]=p_value.y;
|
||
|
elements[2][p_axis]=p_value.z;
|
||
|
}
|
||
|
|
||
|
void rotate(const Vector3& p_axis, real_t p_phi)
|
||
|
{
|
||
|
*this = rotated(p_axis, p_phi);
|
||
|
}
|
||
|
|
||
|
Basis rotated(const Vector3& p_axis, real_t p_phi) const
|
||
|
{
|
||
|
return Basis(p_axis, p_phi) * (*this);
|
||
|
}
|
||
|
|
||
|
Vector3 get_rotation() const; // need?!
|
||
|
|
||
|
void scale( const Vector3& p_scale )
|
||
|
{
|
||
|
elements[0][0]*=p_scale.x;
|
||
|
elements[0][1]*=p_scale.x;
|
||
|
elements[0][2]*=p_scale.x;
|
||
|
elements[1][0]*=p_scale.y;
|
||
|
elements[1][1]*=p_scale.y;
|
||
|
elements[1][2]*=p_scale.y;
|
||
|
elements[2][0]*=p_scale.z;
|
||
|
elements[2][1]*=p_scale.z;
|
||
|
elements[2][2]*=p_scale.z;
|
||
|
}
|
||
|
|
||
|
Basis scaled( const Vector3& p_scale ) const
|
||
|
{
|
||
|
Basis b = *this;
|
||
|
b.scale(p_scale);
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
Vector3 get_scale() const
|
||
|
{
|
||
|
// We are assuming M = R.S, and performing a polar decomposition to extract R and S.
|
||
|
// FIXME: We eventually need a proper polar decomposition.
|
||
|
// As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
|
||
|
// (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
|
||
|
// As such, it works in conjuction with get_rotation().
|
||
|
real_t det_sign = determinant() > 0 ? 1 : -1;
|
||
|
return det_sign*Vector3(
|
||
|
Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
|
||
|
Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
|
||
|
Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
|
||
|
);
|
||
|
}
|
||
|
|
||
|
Vector3 get_euler() const
|
||
|
{
|
||
|
// Euler angles in XYZ convention.
|
||
|
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
|
||
|
//
|
||
|
// rot = cy*cz -cy*sz sy
|
||
|
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
||
|
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
||
|
|
||
|
Vector3 euler;
|
||
|
|
||
|
if (is_rotation() == false)
|
||
|
return euler;
|
||
|
|
||
|
euler.y = ::asin(elements[0][2]);
|
||
|
if ( euler.y < Math_PI*0.5) {
|
||
|
if ( euler.y > -Math_PI*0.5) {
|
||
|
euler.x = ::atan2(-elements[1][2],elements[2][2]);
|
||
|
euler.z = ::atan2(-elements[0][1],elements[0][0]);
|
||
|
|
||
|
} else {
|
||
|
real_t r = ::atan2(elements[1][0],elements[1][1]);
|
||
|
euler.z = 0.0;
|
||
|
euler.x = euler.z - r;
|
||
|
|
||
|
}
|
||
|
} else {
|
||
|
real_t r = ::atan2(elements[0][1],elements[1][1]);
|
||
|
euler.z = 0;
|
||
|
euler.x = r - euler.z;
|
||
|
}
|
||
|
|
||
|
return euler;
|
||
|
}
|
||
|
|
||
|
void set_euler(const Vector3& p_euler)
|
||
|
{
|
||
|
real_t c, s;
|
||
|
|
||
|
c = ::cos(p_euler.x);
|
||
|
s = ::sin(p_euler.x);
|
||
|
Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
|
||
|
|
||
|
c = ::cos(p_euler.y);
|
||
|
s = ::sin(p_euler.y);
|
||
|
Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
|
||
|
|
||
|
c = ::cos(p_euler.z);
|
||
|
s = ::sin(p_euler.z);
|
||
|
Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
|
||
|
|
||
|
//optimizer will optimize away all this anyway
|
||
|
*this = xmat*(ymat*zmat);
|
||
|
}
|
||
|
|
||
|
// transposed dot products
|
||
|
real_t tdotx(const Vector3& v) const {
|
||
|
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
|
||
|
}
|
||
|
real_t tdoty(const Vector3& v) const {
|
||
|
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
|
||
|
}
|
||
|
real_t tdotz(const Vector3& v) const {
|
||
|
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
|
||
|
}
|
||
|
|
||
|
bool isequal_approx(const Basis& a, const Basis& b) const; // need?
|
||
|
|
||
|
bool operator==(const Basis& p_matrix) const
|
||
|
{
|
||
|
for (int i=0;i<3;i++) {
|
||
|
for (int j=0;j<3;j++) {
|
||
|
if (elements[i][j] != p_matrix.elements[i][j])
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Basis& p_matrix) const
|
||
|
{
|
||
|
return (!(*this==p_matrix));
|
||
|
}
|
||
|
|
||
|
Vector3 xform(const Vector3& p_vector) const {
|
||
|
|
||
|
return Vector3(
|
||
|
elements[0].dot(p_vector),
|
||
|
elements[1].dot(p_vector),
|
||
|
elements[2].dot(p_vector)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
Vector3 xform_inv(const Vector3& p_vector) const {
|
||
|
|
||
|
return Vector3(
|
||
|
(elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ),
|
||
|
(elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ),
|
||
|
(elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z )
|
||
|
);
|
||
|
}
|
||
|
void operator*=(const Basis& p_matrix)
|
||
|
{
|
||
|
set(
|
||
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
||
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
||
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
|
||
|
|
||
|
}
|
||
|
|
||
|
Basis operator*(const Basis& p_matrix) const
|
||
|
{
|
||
|
return Basis(
|
||
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
||
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
||
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) );
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void operator+=(const Basis& p_matrix) {
|
||
|
|
||
|
elements[0] += p_matrix.elements[0];
|
||
|
elements[1] += p_matrix.elements[1];
|
||
|
elements[2] += p_matrix.elements[2];
|
||
|
}
|
||
|
|
||
|
Basis operator+(const Basis& p_matrix) const {
|
||
|
|
||
|
Basis ret(*this);
|
||
|
ret += p_matrix;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void operator-=(const Basis& p_matrix) {
|
||
|
|
||
|
elements[0] -= p_matrix.elements[0];
|
||
|
elements[1] -= p_matrix.elements[1];
|
||
|
elements[2] -= p_matrix.elements[2];
|
||
|
}
|
||
|
|
||
|
Basis operator-(const Basis& p_matrix) const {
|
||
|
|
||
|
Basis ret(*this);
|
||
|
ret -= p_matrix;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void operator*=(real_t p_val) {
|
||
|
|
||
|
elements[0]*=p_val;
|
||
|
elements[1]*=p_val;
|
||
|
elements[2]*=p_val;
|
||
|
}
|
||
|
|
||
|
Basis operator*(real_t p_val) const {
|
||
|
|
||
|
Basis ret(*this);
|
||
|
ret *= p_val;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int get_orthogonal_index() const; // down below
|
||
|
|
||
|
void set_orthogonal_index(int p_index); // down below
|
||
|
|
||
|
bool is_orthogonal() const; // need?
|
||
|
bool is_rotation() const; // need?
|
||
|
|
||
|
operator String() const;
|
||
|
|
||
|
void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const;
|
||
|
|
||
|
/* create / set */
|
||
|
|
||
|
|
||
|
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
||
|
|
||
|
elements[0][0]=xx;
|
||
|
elements[0][1]=xy;
|
||
|
elements[0][2]=xz;
|
||
|
elements[1][0]=yx;
|
||
|
elements[1][1]=yy;
|
||
|
elements[1][2]=yz;
|
||
|
elements[2][0]=zx;
|
||
|
elements[2][1]=zy;
|
||
|
elements[2][2]=zz;
|
||
|
}
|
||
|
Vector3 get_column(int i) const {
|
||
|
|
||
|
return Vector3(elements[0][i],elements[1][i],elements[2][i]);
|
||
|
}
|
||
|
|
||
|
Vector3 get_row(int i) const {
|
||
|
|
||
|
return Vector3(elements[i][0],elements[i][1],elements[i][2]);
|
||
|
}
|
||
|
Vector3 get_main_diagonal() const {
|
||
|
return Vector3(elements[0][0],elements[1][1],elements[2][2]);
|
||
|
}
|
||
|
|
||
|
void set_row(int i, const Vector3& p_row) {
|
||
|
elements[i][0]=p_row.x;
|
||
|
elements[i][1]=p_row.y;
|
||
|
elements[i][2]=p_row.z;
|
||
|
}
|
||
|
|
||
|
Basis transpose_xform(const Basis& m) const
|
||
|
{
|
||
|
return Basis(
|
||
|
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
|
||
|
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
|
||
|
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
|
||
|
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
|
||
|
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
|
||
|
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
|
||
|
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
|
||
|
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
|
||
|
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
|
||
|
}
|
||
|
|
||
|
void orthonormalize()
|
||
|
{
|
||
|
if (determinant() != 0) {
|
||
|
// not this crap again
|
||
|
__builtin_trap(); // WTF WTF WTF
|
||
|
// somebody please complain some day
|
||
|
// so I can fix this
|
||
|
|
||
|
// need propert error reporting here.
|
||
|
}
|
||
|
|
||
|
// Gram-Schmidt Process
|
||
|
|
||
|
Vector3 x=get_axis(0);
|
||
|
Vector3 y=get_axis(1);
|
||
|
Vector3 z=get_axis(2);
|
||
|
|
||
|
x.normalize();
|
||
|
y = (y-x*(x.dot(y)));
|
||
|
y.normalize();
|
||
|
z = (z-x*(x.dot(z))-y*(y.dot(z)));
|
||
|
z.normalize();
|
||
|
|
||
|
set_axis(0,x);
|
||
|
set_axis(1,y);
|
||
|
set_axis(2,z);
|
||
|
}
|
||
|
|
||
|
Basis orthonormalized() const
|
||
|
{
|
||
|
Basis b = *this;
|
||
|
b.orthonormalize();
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
bool is_symmetric() const
|
||
|
{
|
||
|
if (::fabs(elements[0][1] - elements[1][0]) > CMP_EPSILON)
|
||
|
return false;
|
||
|
if (::fabs(elements[0][2] - elements[2][0]) > CMP_EPSILON)
|
||
|
return false;
|
||
|
if (::fabs(elements[1][2] - elements[2][1]) > CMP_EPSILON)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
Basis diagonalize()
|
||
|
{
|
||
|
// I love copy paste
|
||
|
|
||
|
if (!is_symmetric())
|
||
|
return Basis();
|
||
|
|
||
|
const int ite_max = 1024;
|
||
|
|
||
|
real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
|
||
|
|
||
|
int ite = 0;
|
||
|
Basis acc_rot;
|
||
|
while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) {
|
||
|
real_t el01_2 = elements[0][1] * elements[0][1];
|
||
|
real_t el02_2 = elements[0][2] * elements[0][2];
|
||
|
real_t el12_2 = elements[1][2] * elements[1][2];
|
||
|
// Find the pivot element
|
||
|
int i, j;
|
||
|
if (el01_2 > el02_2) {
|
||
|
if (el12_2 > el01_2) {
|
||
|
i = 1;
|
||
|
j = 2;
|
||
|
} else {
|
||
|
i = 0;
|
||
|
j = 1;
|
||
|
}
|
||
|
} else {
|
||
|
if (el12_2 > el02_2) {
|
||
|
i = 1;
|
||
|
j = 2;
|
||
|
} else {
|
||
|
i = 0;
|
||
|
j = 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute the rotation angle
|
||
|
real_t angle;
|
||
|
if (::fabs(elements[j][j] - elements[i][i]) < CMP_EPSILON) {
|
||
|
angle = Math_PI / 4;
|
||
|
} else {
|
||
|
angle = 0.5 * ::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
|
||
|
}
|
||
|
|
||
|
// Compute the rotation matrix
|
||
|
Basis rot;
|
||
|
rot.elements[i][i] = rot.elements[j][j] = ::cos(angle);
|
||
|
rot.elements[i][j] = - (rot.elements[j][i] = ::sin(angle));
|
||
|
|
||
|
// Update the off matrix norm
|
||
|
off_matrix_norm_2 -= elements[i][j] * elements[i][j];
|
||
|
|
||
|
// Apply the rotation
|
||
|
*this = rot * *this * rot.transposed();
|
||
|
acc_rot = rot * acc_rot;
|
||
|
}
|
||
|
|
||
|
return acc_rot;
|
||
|
}
|
||
|
|
||
|
operator Quat() const;
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
static const Basis _ortho_bases[24]={
|
||
|
Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
|
||
|
Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
|
||
|
Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
|
||
|
Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
|
||
|
Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
|
||
|
Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
|
||
|
Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
|
||
|
Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
|
||
|
Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
|
||
|
Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
|
||
|
Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
|
||
|
Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
|
||
|
Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
|
||
|
Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
|
||
|
Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
|
||
|
Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
|
||
|
Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
|
||
|
Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
|
||
|
Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
|
||
|
Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
|
||
|
Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
|
||
|
Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
|
||
|
Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
|
||
|
Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
|
||
|
};
|
||
|
|
||
|
|
||
|
int Basis::get_orthogonal_index() const
|
||
|
{
|
||
|
//could be sped up if i come up with a way
|
||
|
Basis orth=*this;
|
||
|
for(int i=0;i<3;i++) {
|
||
|
for(int j=0;j<3;j++) {
|
||
|
|
||
|
real_t v = orth[i][j];
|
||
|
if (v>0.5)
|
||
|
v=1.0;
|
||
|
else if (v<-0.5)
|
||
|
v=-1.0;
|
||
|
else
|
||
|
v=0;
|
||
|
|
||
|
orth[i][j]=v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for(int i=0;i<24;i++) {
|
||
|
|
||
|
if (_ortho_bases[i]==orth)
|
||
|
return i;
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Basis::set_orthogonal_index(int p_index){
|
||
|
|
||
|
//there only exist 24 orthogonal bases in r3
|
||
|
if (p_index >= 24) {
|
||
|
__builtin_trap(); // kiiiiill me
|
||
|
// I don't want to do shady stuff like that
|
||
|
// @Todo WTF WTF
|
||
|
}
|
||
|
|
||
|
|
||
|
*this=_ortho_bases[p_index];
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
Basis::Basis(const Vector3& p_euler) {
|
||
|
|
||
|
set_euler( p_euler );
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#include "Quat.h"
|
||
|
|
||
|
namespace godot {
|
||
|
|
||
|
Basis::Basis(const Quat& p_quat) {
|
||
|
|
||
|
real_t d = p_quat.length_squared();
|
||
|
real_t s = 2.0 / d;
|
||
|
real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
|
||
|
real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
|
||
|
real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
|
||
|
real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
|
||
|
set( 1.0 - (yy + zz), xy - wz, xz + wy,
|
||
|
xy + wz, 1.0 - (xx + zz), yz - wx,
|
||
|
xz - wy, yz + wx, 1.0 - (xx + yy)) ;
|
||
|
|
||
|
}
|
||
|
|
||
|
Basis::Basis(const Vector3& p_axis, real_t p_phi) {
|
||
|
// Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
|
||
|
|
||
|
Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
|
||
|
|
||
|
real_t cosine= ::cos(p_phi);
|
||
|
real_t sine= ::sin(p_phi);
|
||
|
|
||
|
elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
|
||
|
elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
|
||
|
elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
|
||
|
|
||
|
elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
|
||
|
elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
|
||
|
elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
|
||
|
|
||
|
elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
|
||
|
elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
|
||
|
elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif // BASIS_H
|