godot-module-template/engine/thirdparty/embree/kernels/common/device.cpp

731 lines
24 KiB
C++

// Copyright 2009-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include "device.h"
#include "../../common/tasking/taskscheduler.h"
#include "../hash.h"
#include "scene_triangle_mesh.h"
#include "scene_user_geometry.h"
#include "scene_instance.h"
#include "scene_curves.h"
#include "scene_subdiv_mesh.h"
#include "../subdiv/tessellation_cache.h"
#include "acceln.h"
#include "geometry.h"
#include "../geometry/cylinder.h"
#include "../bvh/bvh4_factory.h"
#include "../bvh/bvh8_factory.h"
#include "../../common/sys/alloc.h"
#if defined(EMBREE_SYCL_SUPPORT)
# include "../level_zero/ze_wrapper.h"
#endif
namespace embree
{
/*! some global variables that can be set via rtcSetParameter1i for debugging purposes */
ssize_t Device::debug_int0 = 0;
ssize_t Device::debug_int1 = 0;
ssize_t Device::debug_int2 = 0;
ssize_t Device::debug_int3 = 0;
static MutexSys g_mutex;
static std::map<Device*,size_t> g_cache_size_map;
static std::map<Device*,size_t> g_num_threads_map;
struct TaskArena
{
#if USE_TASK_ARENA
std::unique_ptr<tbb::task_arena> arena;
#endif
};
Device::Device (const char* cfg) : arena(new TaskArena())
{
/* check that CPU supports lowest ISA */
if (!hasISA(ISA)) {
throw_RTCError(RTC_ERROR_UNSUPPORTED_CPU,"CPU does not support " ISA_STR);
}
/* set default frequency level for detected CPU */
switch (getCPUModel()) {
case CPU::UNKNOWN: frequency_level = FREQUENCY_SIMD256; break;
case CPU::XEON_ICE_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_ICE_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_TIGER_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_COMET_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_CANNON_LAKE:frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_KABY_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::XEON_SKY_LAKE: frequency_level = FREQUENCY_SIMD128; break;
case CPU::CORE_SKY_LAKE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::XEON_BROADWELL: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_BROADWELL: frequency_level = FREQUENCY_SIMD256; break;
case CPU::XEON_HASWELL: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_HASWELL: frequency_level = FREQUENCY_SIMD256; break;
case CPU::XEON_IVY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::CORE_IVY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::SANDY_BRIDGE: frequency_level = FREQUENCY_SIMD256; break;
case CPU::NEHALEM: frequency_level = FREQUENCY_SIMD128; break;
case CPU::CORE2: frequency_level = FREQUENCY_SIMD128; break;
case CPU::CORE1: frequency_level = FREQUENCY_SIMD128; break;
case CPU::XEON_PHI_KNIGHTS_MILL : frequency_level = FREQUENCY_SIMD512; break;
case CPU::XEON_PHI_KNIGHTS_LANDING: frequency_level = FREQUENCY_SIMD512; break;
case CPU::ARM: frequency_level = FREQUENCY_SIMD256; break;
}
/* initialize global state */
#if defined(EMBREE_CONFIG)
State::parseString(EMBREE_CONFIG);
#endif
State::parseString(cfg);
State::verify();
/* check whether selected ISA is supported by the HW, as the user could have forced an unsupported ISA */
if (!checkISASupport()) {
throw_RTCError(RTC_ERROR_UNSUPPORTED_CPU,"CPU does not support selected ISA");
}
/*! do some internal tests */
assert(isa::Cylinder::verify());
/*! enable huge page support if desired */
#if defined(__WIN32__)
if (State::enable_selockmemoryprivilege)
State::hugepages_success &= win_enable_selockmemoryprivilege(State::verbosity(3));
#endif
State::hugepages_success &= os_init(State::hugepages,State::verbosity(3));
/*! set tessellation cache size */
setCacheSize( State::tessellation_cache_size );
/*! enable some floating point exceptions to catch bugs */
if (State::float_exceptions)
{
int exceptions = _MM_MASK_MASK;
//exceptions &= ~_MM_MASK_INVALID;
exceptions &= ~_MM_MASK_DENORM;
exceptions &= ~_MM_MASK_DIV_ZERO;
//exceptions &= ~_MM_MASK_OVERFLOW;
//exceptions &= ~_MM_MASK_UNDERFLOW;
//exceptions &= ~_MM_MASK_INEXACT;
_MM_SET_EXCEPTION_MASK(exceptions);
}
/* print info header */
if (State::verbosity(1))
print();
if (State::verbosity(2))
State::print();
/* register all algorithms */
bvh4_factory = make_unique(new BVH4Factory(enabled_builder_cpu_features, enabled_cpu_features));
#if defined(EMBREE_TARGET_SIMD8)
bvh8_factory = make_unique(new BVH8Factory(enabled_builder_cpu_features, enabled_cpu_features));
#endif
/* setup tasking system */
initTaskingSystem(numThreads);
}
Device::~Device ()
{
setCacheSize(0);
exitTaskingSystem();
}
std::string getEnabledTargets()
{
std::string v;
#if defined(EMBREE_TARGET_SSE2)
v += "SSE2 ";
#endif
#if defined(EMBREE_TARGET_SSE42)
v += "SSE4.2 ";
#endif
#if defined(EMBREE_TARGET_AVX)
v += "AVX ";
#endif
#if defined(EMBREE_TARGET_AVX2)
v += "AVX2 ";
#endif
#if defined(EMBREE_TARGET_AVX512)
v += "AVX512 ";
#endif
return v;
}
std::string getEmbreeFeatures()
{
std::string v;
#if defined(EMBREE_RAY_MASK)
v += "raymasks ";
#endif
#if defined (EMBREE_BACKFACE_CULLING)
v += "backfaceculling ";
#endif
#if defined (EMBREE_BACKFACE_CULLING_CURVES)
v += "backfacecullingcurves ";
#endif
#if defined (EMBREE_BACKFACE_CULLING_SPHERES)
v += "backfacecullingspheres ";
#endif
#if defined(EMBREE_FILTER_FUNCTION)
v += "intersection_filter ";
#endif
#if defined (EMBREE_COMPACT_POLYS)
v += "compact_polys ";
#endif
return v;
}
void Device::print()
{
const int cpu_features = getCPUFeatures();
std::cout << std::endl;
std::cout << "Embree Ray Tracing Kernels " << RTC_VERSION_STRING << " (" << RTC_HASH << ")" << std::endl;
std::cout << " Compiler : " << getCompilerName() << std::endl;
std::cout << " Build : ";
#if defined(DEBUG)
std::cout << "Debug " << std::endl;
#else
std::cout << "Release " << std::endl;
#endif
std::cout << " Platform : " << getPlatformName() << std::endl;
std::cout << " CPU : " << stringOfCPUModel(getCPUModel()) << " (" << getCPUVendor() << ")" << std::endl;
std::cout << " Threads : " << getNumberOfLogicalThreads() << std::endl;
std::cout << " ISA : " << stringOfCPUFeatures(cpu_features) << std::endl;
std::cout << " Targets : " << supportedTargetList(cpu_features) << std::endl;
const bool hasFTZ = _mm_getcsr() & _MM_FLUSH_ZERO_ON;
const bool hasDAZ = _mm_getcsr() & _MM_DENORMALS_ZERO_ON;
std::cout << " MXCSR : " << "FTZ=" << hasFTZ << ", DAZ=" << hasDAZ << std::endl;
std::cout << " Config" << std::endl;
std::cout << " Threads : " << (numThreads ? toString(numThreads) : std::string("default")) << std::endl;
std::cout << " ISA : " << stringOfCPUFeatures(enabled_cpu_features) << std::endl;
std::cout << " Targets : " << supportedTargetList(enabled_cpu_features) << " (supported)" << std::endl;
std::cout << " " << getEnabledTargets() << " (compile time enabled)" << std::endl;
std::cout << " Features: " << getEmbreeFeatures() << std::endl;
std::cout << " Tasking : ";
#if defined(TASKING_TBB)
std::cout << "TBB" << TBB_VERSION_MAJOR << "." << TBB_VERSION_MINOR << " ";
#if TBB_INTERFACE_VERSION >= 12002
std::cout << "TBB_header_interface_" << TBB_INTERFACE_VERSION << " TBB_lib_interface_" << TBB_runtime_interface_version() << " ";
#else
std::cout << "TBB_header_interface_" << TBB_INTERFACE_VERSION << " TBB_lib_interface_" << tbb::TBB_runtime_interface_version() << " ";
#endif
#endif
#if defined(TASKING_INTERNAL)
std::cout << "internal_tasking_system ";
#endif
#if defined(TASKING_PPL)
std::cout << "PPL ";
#endif
std::cout << std::endl;
/* check of FTZ and DAZ flags are set in CSR */
if (!hasFTZ || !hasDAZ)
{
#if !defined(_DEBUG)
if (State::verbosity(1))
#endif
{
std::cout << std::endl;
std::cout << "================================================================================" << std::endl;
std::cout << " WARNING: \"Flush to Zero\" or \"Denormals are Zero\" mode not enabled " << std::endl
<< " in the MXCSR control and status register. This can have a severe " << std::endl
<< " performance impact. Please enable these modes for each application " << std::endl
<< " thread the following way:" << std::endl
<< std::endl
<< " #include \"xmmintrin.h\"" << std::endl
<< " #include \"pmmintrin.h\"" << std::endl
<< std::endl
<< " _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);" << std::endl
<< " _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);" << std::endl;
std::cout << "================================================================================" << std::endl;
std::cout << std::endl;
}
}
std::cout << std::endl;
}
void Device::setDeviceErrorCode(RTCError error)
{
RTCError* stored_error = errorHandler.error();
if (*stored_error == RTC_ERROR_NONE)
*stored_error = error;
}
RTCError Device::getDeviceErrorCode()
{
RTCError* stored_error = errorHandler.error();
RTCError error = *stored_error;
*stored_error = RTC_ERROR_NONE;
return error;
}
void Device::setThreadErrorCode(RTCError error)
{
RTCError* stored_error = g_errorHandler.error();
if (*stored_error == RTC_ERROR_NONE)
*stored_error = error;
}
RTCError Device::getThreadErrorCode()
{
RTCError* stored_error = g_errorHandler.error();
RTCError error = *stored_error;
*stored_error = RTC_ERROR_NONE;
return error;
}
void Device::process_error(Device* device, RTCError error, const char* str)
{
/* store global error code when device construction failed */
if (!device)
return setThreadErrorCode(error);
/* print error when in verbose mode */
if (device->verbosity(1))
{
switch (error) {
case RTC_ERROR_NONE : std::cerr << "Embree: No error"; break;
case RTC_ERROR_UNKNOWN : std::cerr << "Embree: Unknown error"; break;
case RTC_ERROR_INVALID_ARGUMENT : std::cerr << "Embree: Invalid argument"; break;
case RTC_ERROR_INVALID_OPERATION: std::cerr << "Embree: Invalid operation"; break;
case RTC_ERROR_OUT_OF_MEMORY : std::cerr << "Embree: Out of memory"; break;
case RTC_ERROR_UNSUPPORTED_CPU : std::cerr << "Embree: Unsupported CPU"; break;
default : std::cerr << "Embree: Invalid error code"; break;
};
if (str) std::cerr << ", (" << str << ")";
std::cerr << std::endl;
}
/* call user specified error callback */
if (device->error_function)
device->error_function(device->error_function_userptr,error,str);
/* record error code */
device->setDeviceErrorCode(error);
}
void Device::memoryMonitor(ssize_t bytes, bool post)
{
if (State::memory_monitor_function && bytes != 0) {
if (!State::memory_monitor_function(State::memory_monitor_userptr,bytes,post)) {
if (bytes > 0) { // only throw exception when we allocate memory to never throw inside a destructor
throw_RTCError(RTC_ERROR_OUT_OF_MEMORY,"memory monitor forced termination");
}
}
}
}
size_t getMaxNumThreads()
{
size_t maxNumThreads = 0;
for (std::map<Device*,size_t>::iterator i=g_num_threads_map.begin(); i != g_num_threads_map.end(); i++)
maxNumThreads = max(maxNumThreads, (*i).second);
if (maxNumThreads == 0)
maxNumThreads = std::numeric_limits<size_t>::max();
return maxNumThreads;
}
size_t getMaxCacheSize()
{
size_t maxCacheSize = 0;
for (std::map<Device*,size_t>::iterator i=g_cache_size_map.begin(); i!= g_cache_size_map.end(); i++)
maxCacheSize = max(maxCacheSize, (*i).second);
return maxCacheSize;
}
void Device::setCacheSize(size_t bytes)
{
#if defined(EMBREE_GEOMETRY_SUBDIVISION)
Lock<MutexSys> lock(g_mutex);
if (bytes == 0) g_cache_size_map.erase(this);
else g_cache_size_map[this] = bytes;
size_t maxCacheSize = getMaxCacheSize();
resizeTessellationCache(maxCacheSize);
#endif
}
void Device::initTaskingSystem(size_t numThreads)
{
Lock<MutexSys> lock(g_mutex);
if (numThreads == 0)
g_num_threads_map[this] = std::numeric_limits<size_t>::max();
else
g_num_threads_map[this] = numThreads;
/* create task scheduler */
size_t maxNumThreads = getMaxNumThreads();
TaskScheduler::create(maxNumThreads,State::set_affinity,State::start_threads);
#if USE_TASK_ARENA
const size_t nThreads = min(maxNumThreads,TaskScheduler::threadCount());
const size_t uThreads = min(max(numUserThreads,(size_t)1),nThreads);
arena->arena = make_unique(new tbb::task_arena((int)nThreads,(unsigned int)uThreads));
#endif
}
void Device::exitTaskingSystem()
{
Lock<MutexSys> lock(g_mutex);
g_num_threads_map.erase(this);
/* terminate tasking system */
if (g_num_threads_map.size() == 0) {
TaskScheduler::destroy();
}
/* or configure new number of threads */
else {
size_t maxNumThreads = getMaxNumThreads();
TaskScheduler::create(maxNumThreads,State::set_affinity,State::start_threads);
}
#if USE_TASK_ARENA
arena->arena.reset();
#endif
}
void Device::execute(bool join, const std::function<void()>& func)
{
#if USE_TASK_ARENA
if (join) {
arena->arena->execute(func);
}
else
#endif
{
func();
}
}
void Device::setProperty(const RTCDeviceProperty prop, ssize_t val)
{
/* hidden internal properties */
switch ((size_t)prop)
{
case 1000000: debug_int0 = val; return;
case 1000001: debug_int1 = val; return;
case 1000002: debug_int2 = val; return;
case 1000003: debug_int3 = val; return;
}
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown writable property");
}
ssize_t Device::getProperty(const RTCDeviceProperty prop)
{
size_t iprop = (size_t)prop;
/* get name of internal regression test */
if (iprop >= 2000000 && iprop < 3000000)
{
RegressionTest* test = getRegressionTest(iprop-2000000);
if (test) return (ssize_t) test->name.c_str();
else return 0;
}
/* run internal regression test */
if (iprop >= 3000000 && iprop < 4000000)
{
RegressionTest* test = getRegressionTest(iprop-3000000);
if (test) return test->run();
else return 0;
}
/* documented properties */
switch (prop)
{
case RTC_DEVICE_PROPERTY_VERSION_MAJOR: return RTC_VERSION_MAJOR;
case RTC_DEVICE_PROPERTY_VERSION_MINOR: return RTC_VERSION_MINOR;
case RTC_DEVICE_PROPERTY_VERSION_PATCH: return RTC_VERSION_PATCH;
case RTC_DEVICE_PROPERTY_VERSION : return RTC_VERSION;
#if defined(EMBREE_TARGET_SIMD4) && defined(EMBREE_RAY_PACKETS)
case RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: return hasISA(SSE2);
#else
case RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: return 0;
#endif
#if defined(EMBREE_TARGET_SIMD8) && defined(EMBREE_RAY_PACKETS)
case RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: return hasISA(AVX);
#else
case RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: return 0;
#endif
#if defined(EMBREE_TARGET_SIMD16) && defined(EMBREE_RAY_PACKETS)
case RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: return hasISA(AVX512);
#else
case RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: return 0;
#endif
#if defined(EMBREE_RAY_MASK)
case RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: return 0;
#endif
#if defined(EMBREE_BACKFACE_CULLING)
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: return 1;
#else
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: return 0;
#endif
#if defined(EMBREE_BACKFACE_CULLING_CURVES)
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_CURVES_ENABLED: return 1;
#else
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_CURVES_ENABLED: return 0;
#endif
#if defined(EMBREE_BACKFACE_CULLING_SPHERES)
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_SPHERES_ENABLED: return 1;
#else
case RTC_DEVICE_PROPERTY_BACKFACE_CULLING_SPHERES_ENABLED: return 0;
#endif
#if defined(EMBREE_COMPACT_POLYS)
case RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: return 1;
#else
case RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: return 0;
#endif
#if defined(EMBREE_FILTER_FUNCTION)
case RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: return 0;
#endif
#if defined(EMBREE_IGNORE_INVALID_RAYS)
case RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: return 1;
#else
case RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: return 0;
#endif
#if defined(TASKING_INTERNAL)
case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 0;
#endif
#if defined(TASKING_TBB)
case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 1;
#endif
#if defined(TASKING_PPL)
case RTC_DEVICE_PROPERTY_TASKING_SYSTEM: return 2;
#endif
#if defined(EMBREE_GEOMETRY_TRIANGLE)
case RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(EMBREE_GEOMETRY_QUAD)
case RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(EMBREE_GEOMETRY_CURVE)
case RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(EMBREE_GEOMETRY_SUBDIVISION)
case RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(EMBREE_GEOMETRY_USER)
case RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(EMBREE_GEOMETRY_POINT)
case RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: return 0;
#endif
#if defined(TASKING_PPL)
case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 0;
#elif defined(TASKING_TBB) && (TBB_INTERFACE_VERSION_MAJOR < 8)
case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 0;
#else
case RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: return 1;
#endif
#if defined(TASKING_TBB) && TASKING_TBB_USE_TASK_ISOLATION
case RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: return 1;
#else
case RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: return 0;
#endif
default: throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "unknown readable property"); break;
};
}
void* Device::malloc(size_t size, size_t align) {
return alignedMalloc(size,align);
}
void Device::free(void* ptr) {
alignedFree(ptr);
}
#if defined(EMBREE_SYCL_SUPPORT)
DeviceGPU::DeviceGPU(sycl::context sycl_context, const char* cfg)
: Device(cfg), gpu_context(sycl_context)
{
/* initialize ZeWrapper */
if (ZeWrapper::init() != ZE_RESULT_SUCCESS)
throw_RTCError(RTC_ERROR_UNKNOWN, "cannot initialize ZeWrapper");
/* take first device as default device */
auto devices = gpu_context.get_devices();
if (devices.size() == 0)
throw_RTCError(RTC_ERROR_UNKNOWN, "SYCL context contains no device");
gpu_device = devices[0];
/* check if RTAS build extension is available */
sycl::platform platform = gpu_device.get_platform();
ze_driver_handle_t hDriver = sycl::get_native<sycl::backend::ext_oneapi_level_zero>(platform);
uint32_t count = 0;
std::vector<ze_driver_extension_properties_t> extensions;
ze_result_t result = ZeWrapper::zeDriverGetExtensionProperties(hDriver,&count,extensions.data());
if (result != ZE_RESULT_SUCCESS)
throw_RTCError(RTC_ERROR_UNKNOWN, "zeDriverGetExtensionProperties failed");
extensions.resize(count);
result = ZeWrapper::zeDriverGetExtensionProperties(hDriver,&count,extensions.data());
if (result != ZE_RESULT_SUCCESS)
throw_RTCError(RTC_ERROR_UNKNOWN, "zeDriverGetExtensionProperties failed");
#if defined(EMBREE_SYCL_L0_RTAS_BUILDER)
bool ze_rtas_builder = false;
for (uint32_t i=0; i<extensions.size(); i++)
{
if (strncmp("ZE_experimental_rtas_builder",extensions[i].name,sizeof(extensions[i].name)) == 0)
ze_rtas_builder = true;
}
if (!ze_rtas_builder)
throw_RTCError(RTC_ERROR_UNKNOWN, "ZE_experimental_rtas_builder extension not found");
result = ZeWrapper::initRTASBuilder(hDriver,ZeWrapper::LEVEL_ZERO);
if (result == ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE)
throw_RTCError(RTC_ERROR_UNKNOWN, "cannot load ZE_experimental_rtas_builder extension");
if (result != ZE_RESULT_SUCCESS)
throw_RTCError(RTC_ERROR_UNKNOWN, "cannot initialize ZE_experimental_rtas_builder extension");
#else
ZeWrapper::initRTASBuilder(hDriver,ZeWrapper::INTERNAL);
#endif
if (State::verbosity(1))
{
if (ZeWrapper::rtas_builder == ZeWrapper::INTERNAL)
std::cout << " Internal RTAS Builder" << std::endl;
else
std::cout << " Level Zero RTAS Builder" << std::endl;
}
/* check if extension library can get loaded */
ze_rtas_parallel_operation_exp_handle_t hParallelOperation;
result = ZeWrapper::zeRTASParallelOperationCreateExp(hDriver, &hParallelOperation);
if (result == ZE_RESULT_ERROR_DEPENDENCY_UNAVAILABLE)
throw_RTCError(RTC_ERROR_UNKNOWN, "Level Zero RTAS Build Extension cannot get loaded");
if (result == ZE_RESULT_SUCCESS)
ZeWrapper::zeRTASParallelOperationDestroyExp(hParallelOperation);
gpu_maxWorkGroupSize = getGPUDevice().get_info<sycl::info::device::max_work_group_size>();
gpu_maxComputeUnits = getGPUDevice().get_info<sycl::info::device::max_compute_units>();
if (State::verbosity(1))
{
sycl::platform platform = gpu_context.get_platform();
std::cout << " Platform : " << platform.get_info<sycl::info::platform::name>() << std::endl;
std::cout << " Device : " << getGPUDevice().get_info<sycl::info::device::name>() << std::endl;
std::cout << " Max Work Group Size : " << gpu_maxWorkGroupSize << std::endl;
std::cout << " Max Compute Units : " << gpu_maxComputeUnits << std::endl;
std::cout << std::endl;
}
dispatchGlobalsPtr = zeRTASInitExp(gpu_device, gpu_context);
}
DeviceGPU::~DeviceGPU()
{
rthwifCleanup(this,dispatchGlobalsPtr,gpu_context);
}
void DeviceGPU::enter() {
enableUSMAllocEmbree(&gpu_context,&gpu_device);
}
void DeviceGPU::leave() {
disableUSMAllocEmbree();
}
void* DeviceGPU::malloc(size_t size, size_t align) {
return alignedSYCLMalloc(&gpu_context,&gpu_device,size,align,EMBREE_USM_SHARED_DEVICE_READ_ONLY);
}
void DeviceGPU::free(void* ptr) {
alignedSYCLFree(&gpu_context,ptr);
}
void DeviceGPU::setSYCLDevice(const sycl::device sycl_device_in) {
gpu_device = sycl_device_in;
}
#endif
DeviceEnterLeave::DeviceEnterLeave (RTCDevice hdevice)
: device((Device*)hdevice)
{
assert(device);
device->refInc();
device->enter();
}
DeviceEnterLeave::DeviceEnterLeave (RTCScene hscene)
: device(((Scene*)hscene)->device)
{
assert(device);
device->refInc();
device->enter();
}
DeviceEnterLeave::DeviceEnterLeave (RTCGeometry hgeometry)
: device(((Geometry*)hgeometry)->device)
{
assert(device);
device->refInc();
device->enter();
}
DeviceEnterLeave::DeviceEnterLeave (RTCBuffer hbuffer)
: device(((Buffer*)hbuffer)->device)
{
assert(device);
device->refInc();
device->enter();
}
DeviceEnterLeave::~DeviceEnterLeave() {
device->leave();
device->refDec();
}
}