godot-module-template/engine/servers/physics_3d/godot_collision_solver_3d.cpp

590 lines
21 KiB
C++

/**************************************************************************/
/* godot_collision_solver_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "godot_collision_solver_3d.h"
#include "godot_collision_solver_3d_sat.h"
#include "godot_soft_body_3d.h"
#include "gjk_epa.h"
#define collision_solver sat_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
return false;
}
Plane p = p_transform_A.xform(world_boundary->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
GodotShape3D::FeatureType support_type = GodotShape3D::FeatureType::FEATURE_POINT;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
ERR_FAIL_COND_V(support_count != 3, false);
Vector3 circle_pos = supports[0];
Vector3 circle_axis_1 = supports[1] - circle_pos;
Vector3 circle_axis_2 = supports[2] - circle_pos;
// Use 3 equidistant points on the circle.
for (int i = 0; i < 3; ++i) {
Vector3 vertex_pos = circle_pos;
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
supports[i] = vertex_pos;
}
}
bool found = false;
for (int i = 0; i < support_count; i++) {
supports[i] += p_margin * supports[i].normalized();
supports[i] = p_transform_B.xform(supports[i]);
if (p.distance_to(supports[i]) >= 0) {
continue;
}
found = true;
Vector3 support_A = p.project(supports[i]);
if (p_result_callback) {
if (p_swap_result) {
Vector3 normal = (support_A - supports[i]).normalized();
p_result_callback(supports[i], 0, support_A, 0, normal, p_userdata);
} else {
Vector3 normal = (supports[i] - support_A).normalized();
p_result_callback(support_A, 0, supports[i], 0, normal, p_userdata);
}
}
}
return found;
}
bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);
Vector3 from = p_transform_A.origin;
Vector3 to = from + p_transform_A.basis.get_column(2) * (ray->get_length() + p_margin);
Vector3 support_A = to;
Transform3D ai = p_transform_B.affine_inverse();
from = ai.xform(from);
to = ai.xform(to);
Vector3 p, n;
int fi = -1;
if (!p_shape_B->intersect_segment(from, to, p, n, fi, true)) {
return false;
}
// Discard contacts when the ray is fully contained inside the shape.
if (n == Vector3()) {
return false;
}
// Discard contacts in the wrong direction.
if (n.dot(from - to) < CMP_EPSILON) {
return false;
}
Vector3 support_B = p_transform_B.xform(p);
if (ray->get_slide_on_slope()) {
Vector3 global_n = ai.basis.xform_inv(n).normalized();
support_B = support_A + (support_B - support_A).length() * global_n;
}
if (p_result_callback) {
Vector3 normal = (support_B - support_A).normalized();
if (p_swap_result) {
p_result_callback(support_B, 0, support_A, 0, -normal, p_userdata);
} else {
p_result_callback(support_A, 0, support_B, 0, normal, p_userdata);
}
}
return true;
}
struct _SoftBodyContactCollisionInfo {
int node_index = 0;
GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
void *userdata = nullptr;
bool swap_result = false;
int contact_count = 0;
};
void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
_SoftBodyContactCollisionInfo &cinfo = *(static_cast<_SoftBodyContactCollisionInfo *>(p_userdata));
++cinfo.contact_count;
if (!cinfo.result_callback) {
return;
}
if (cinfo.swap_result) {
cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, -normal, cinfo.userdata);
} else {
cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, normal, cinfo.userdata);
}
}
struct _SoftBodyQueryInfo {
GodotSoftBody3D *soft_body = nullptr;
const GodotShape3D *shape_A = nullptr;
const GodotShape3D *shape_B = nullptr;
Transform3D transform_A;
Transform3D node_transform;
_SoftBodyContactCollisionInfo contact_info;
#ifdef DEBUG_ENABLED
int node_query_count = 0;
int convex_query_count = 0;
#endif
};
bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);
Transform3D transform_B;
transform_B.origin = query_cinfo.node_transform.xform(node_position);
query_cinfo.contact_info.node_index = p_node_index;
bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);
#ifdef DEBUG_ENABLED
++query_cinfo.node_query_count;
#endif
// Stop at first collision if contacts are not needed.
return (collided && !query_cinfo.contact_info.result_callback);
}
bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
_SoftBodyQueryInfo &query_cinfo = *(static_cast<_SoftBodyQueryInfo *>(p_userdata));
query_cinfo.shape_A = p_convex;
// Calculate AABB for internal soft body query (in world space).
AABB shape_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
real_t smin, smax;
p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);
shape_aabb.position[i] = smin;
shape_aabb.size[i] = smax - smin;
}
shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());
query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
bool collided = (query_cinfo.contact_info.contact_count > 0);
#ifdef DEBUG_ENABLED
++query_cinfo.convex_query_count;
#endif
// Stop at first collision if contacts are not needed.
return (collided && !query_cinfo.contact_info.result_callback);
}
bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);
GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
const Transform3D &world_to_local = soft_body->get_inv_transform();
const real_t collision_margin = soft_body->get_collision_margin();
GodotSphereShape3D sphere_shape;
sphere_shape.set_data(collision_margin);
_SoftBodyQueryInfo query_cinfo;
query_cinfo.contact_info.result_callback = p_result_callback;
query_cinfo.contact_info.userdata = p_userdata;
query_cinfo.contact_info.swap_result = p_swap_result;
query_cinfo.soft_body = soft_body;
query_cinfo.node_transform = p_transform_B * world_to_local;
query_cinfo.shape_A = p_shape_A;
query_cinfo.transform_A = p_transform_A;
query_cinfo.shape_B = &sphere_shape;
if (p_shape_A->is_concave()) {
// In case of concave shape, query convex shapes first.
const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);
AABB soft_body_aabb = soft_body->get_bounds();
soft_body_aabb.grow_by(collision_margin);
// Calculate AABB for internal concave shape query (in local space).
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_A.basis.get_column(i));
real_t axis_scale = 1.0 / axis.length();
real_t smin = soft_body_aabb.position[i];
real_t smax = smin + soft_body_aabb.size[i];
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
} else {
AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
shape_aabb.grow_by(collision_margin);
soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
}
return (query_cinfo.contact_info.contact_count > 0);
}
struct _ConcaveCollisionInfo {
const Transform3D *transform_A = nullptr;
const GodotShape3D *shape_A = nullptr;
const Transform3D *transform_B = nullptr;
GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
void *userdata = nullptr;
bool swap_result = false;
bool collided = false;
int aabb_tests = 0;
int collisions = 0;
bool tested = false;
real_t margin_A = 0.0f;
real_t margin_B = 0.0f;
Vector3 close_A;
Vector3 close_B;
};
bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
if (!collided) {
return false;
}
cinfo.collided = true;
cinfo.collisions++;
// Stop at first collision if contacts are not needed.
return !cinfo.result_callback;
}
bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = p_result_callback;
cinfo.userdata = p_userdata;
cinfo.swap_result = p_swap_result;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.margin_A = p_margin_A;
cinfo.margin_B = p_margin_B;
cinfo.aabb_tests = 0;
Transform3D rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_column(i));
real_t axis_scale = 1.0 / axis.length();
axis *= axis_scale;
real_t smin = 0.0, smax = 0.0;
p_shape_A->project_range(axis, rel_transform, smin, smax);
smin -= p_margin_A;
smax += p_margin_A;
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_callback, &cinfo, false);
return cinfo.collided;
}
bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
bool concave_A = p_shape_A->is_concave();
bool concave_B = p_shape_B->is_concave();
bool swap = false;
if (type_A > type_B) {
SWAP(type_A, type_B);
SWAP(concave_A, concave_B);
swap = true;
}
if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
return false;
}
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
WARN_PRINT_ONCE("Collisions between world boundaries and rays are not supported.");
return false;
}
if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
WARN_PRINT_ONCE("Collisions between world boundaries and soft bodies are not supported.");
return false;
}
if (swap) {
return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A);
} else {
return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_B);
}
} else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
WARN_PRINT_ONCE("Collisions between rays are not supported.");
return false;
}
if (swap) {
return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
} else {
return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
}
} else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
WARN_PRINT_ONCE("Collisions between soft bodies are not supported.");
return false;
}
if (swap) {
return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
} else {
return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
}
} else if (concave_B) {
if (concave_A) {
WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
return false;
}
if (!swap) {
return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
} else {
return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
}
} else {
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
}
}
bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
_ConcaveCollisionInfo &cinfo = *(static_cast<_ConcaveCollisionInfo *>(p_userdata));
cinfo.aabb_tests++;
Vector3 close_A, close_B;
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
if (cinfo.collided) {
// No need to process any more result.
return true;
}
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
cinfo.close_A = close_A;
cinfo.close_B = close_B;
cinfo.tested = true;
}
cinfo.collisions++;
return false;
}
bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
return false;
}
Plane p = p_transform_A.xform(world_boundary->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
GodotShape3D::FeatureType support_type;
Vector3 support_direction = p_transform_B.basis.xform_inv(-p.normal).normalized();
p_shape_B->get_supports(support_direction, max_supports, supports, support_count, support_type);
if (support_count == 0) { // This is a poor man's way to detect shapes that don't implement get_supports, such as GodotMotionShape3D.
Vector3 support_B = p_transform_B.xform(p_shape_B->get_support(support_direction));
r_point_A = p.project(support_B);
r_point_B = support_B;
bool collided = p.distance_to(support_B) <= 0;
return collided;
}
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
ERR_FAIL_COND_V(support_count != 3, false);
Vector3 circle_pos = supports[0];
Vector3 circle_axis_1 = supports[1] - circle_pos;
Vector3 circle_axis_2 = supports[2] - circle_pos;
// Use 3 equidistant points on the circle.
for (int i = 0; i < 3; ++i) {
Vector3 vertex_pos = circle_pos;
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
supports[i] = vertex_pos;
}
}
bool collided = false;
Vector3 closest;
real_t closest_d = 0;
for (int i = 0; i < support_count; i++) {
supports[i] = p_transform_B.xform(supports[i]);
real_t d = p.distance_to(supports[i]);
if (i == 0 || d < closest_d) {
closest = supports[i];
closest_d = d;
if (d <= 0) {
collided = true;
}
}
}
r_point_A = p.project(closest);
r_point_B = closest;
return collided;
}
bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
Vector3 a, b;
bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
r_point_A = b;
r_point_B = a;
return !col;
} else if (p_shape_B->is_concave()) {
if (p_shape_A->is_concave()) {
return false;
}
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.result_callback = nullptr;
cinfo.userdata = nullptr;
cinfo.swap_result = false;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.aabb_tests = 0;
cinfo.tested = false;
Transform3D rel_transform = p_transform_A;
rel_transform.origin -= p_transform_B.origin;
//quickly compute a local AABB
bool use_cc_hint = p_concave_hint != AABB();
AABB cc_hint_aabb;
if (use_cc_hint) {
cc_hint_aabb = p_concave_hint;
cc_hint_aabb.position -= p_transform_B.origin;
}
AABB local_aabb;
for (int i = 0; i < 3; i++) {
Vector3 axis(p_transform_B.basis.get_column(i));
real_t axis_scale = ((real_t)1.0) / axis.length();
axis *= axis_scale;
real_t smin, smax;
if (use_cc_hint) {
cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
} else {
p_shape_A->project_range(axis, rel_transform, smin, smax);
}
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
if (!cinfo.collided) {
r_point_A = cinfo.close_A;
r_point_B = cinfo.close_B;
}
return !cinfo.collided;
} else {
return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
}
}