godot-module-template/engine/servers/physics_3d/godot_body_pair_3d.cpp

989 lines
31 KiB
C++

/**************************************************************************/
/* godot_body_pair_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "godot_body_pair_3d.h"
#include "godot_collision_solver_3d.h"
#include "godot_space_3d.h"
#include "core/os/os.h"
#define MIN_VELOCITY 0.0001
#define MAX_BIAS_ROTATION (Math_PI / 8)
void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
GodotBodyPair3D *pair = static_cast<GodotBodyPair3D *>(p_userdata);
pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
}
void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A);
Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B);
int new_index = contact_count;
ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));
Contact contact;
contact.index_A = p_index_A;
contact.index_B = p_index_B;
contact.local_A = local_A;
contact.local_B = local_B;
contact.normal = (p_point_A - p_point_B).normalized();
contact.used = true;
// Attempt to determine if the contact will be reused.
real_t contact_recycle_radius = space->get_contact_recycle_radius();
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
contact.acc_normal_impulse = c.acc_normal_impulse;
contact.acc_bias_impulse = c.acc_bias_impulse;
contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
contact.acc_tangent_impulse = c.acc_tangent_impulse;
c = contact;
return;
}
}
// Figure out if the contact amount must be reduced to fit the new contact.
if (new_index == MAX_CONTACTS) {
// Remove the contact with the minimum depth.
const Basis &basis_A = A->get_transform().basis;
const Basis &basis_B = B->get_transform().basis;
int least_deep = -1;
real_t min_depth;
// Start with depth for new contact.
{
Vector3 global_A = basis_A.xform(contact.local_A);
Vector3 global_B = basis_B.xform(contact.local_B) + offset_B;
Vector3 axis = global_A - global_B;
min_depth = axis.dot(contact.normal);
}
for (int i = 0; i < contact_count; i++) {
const Contact &c = contacts[i];
Vector3 global_A = basis_A.xform(c.local_A);
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
Vector3 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < min_depth) {
min_depth = depth;
least_deep = i;
}
}
if (least_deep > -1) {
// Replace the least deep contact by the new one.
contacts[least_deep] = contact;
}
return;
}
contacts[new_index] = contact;
contact_count++;
}
void GodotBodyPair3D::validate_contacts() {
// Make sure to erase contacts that are no longer valid.
real_t max_separation = space->get_contact_max_separation();
real_t max_separation2 = max_separation * max_separation;
const Basis &basis_A = A->get_transform().basis;
const Basis &basis_B = B->get_transform().basis;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
bool erase = false;
if (!c.used) {
// Was left behind in previous frame.
erase = true;
} else {
c.used = false;
Vector3 global_A = basis_A.xform(c.local_A);
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
Vector3 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
erase = true;
}
}
if (erase) {
// Contact no longer needed, remove.
if ((i + 1) < contact_count) {
// Swap with the last one.
SWAP(contacts[i], contacts[contact_count - 1]);
}
i--;
contact_count--;
}
}
}
// _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap)
// Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce!
// Process: only proceed if body A's motion is high relative to its size.
// cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
// adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) {
GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A);
Vector3 motion = p_A->get_linear_velocity() * p_step;
real_t mlen = motion.length();
if (mlen < CMP_EPSILON) {
return false;
}
Vector3 mnormal = motion / mlen;
real_t min = 0.0, max = 0.0;
shape_A_ptr->project_range(mnormal, p_xform_A, min, max);
// Did it move enough in this direction to even attempt raycast?
// Let's say it should move more than 1/3 the size of the object in that axis.
bool fast_object = mlen > (max - min) * 0.3;
if (!fast_object) {
return false; // moving slow enough that there's no chance of tunneling.
}
// A is moving fast enough that tunneling might occur. See if it's really about to collide.
// Roughly predict body B's position in the next frame (ignoring collisions).
Transform3D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step);
// Support points are the farthest forward points on A in the direction of the motion vector.
// i.e. the candidate points of which one should hit B first if any collision does occur.
static const int max_supports = 16;
Vector3 supports_A[max_supports];
int support_count_A;
GodotShape3D::FeatureType support_type_A;
// Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates.
shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A);
// Cast a segment from each support point of A in the motion direction.
int segment_support_idx = -1;
float segment_hit_length = FLT_MAX;
Vector3 segment_hit_local;
for (int i = 0; i < support_count_A; i++) {
supports_A[i] = p_xform_A.xform(supports_A[i]);
Vector3 from = supports_A[i];
Vector3 to = from + motion;
Transform3D from_inv = predicted_xform_B.affine_inverse();
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
// At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd.
// But it still works out.
Vector3 local_from = from_inv.xform(from - motion * 0.1);
Vector3 local_to = from_inv.xform(to);
Vector3 rpos, rnorm;
int fi = -1;
if (p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm, fi, true)) {
float hit_length = local_from.distance_to(rpos);
if (hit_length < segment_hit_length) {
segment_support_idx = i;
segment_hit_length = hit_length;
segment_hit_local = rpos;
}
}
}
if (segment_support_idx == -1) {
// There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
// actually collide yet on next frame. We'll probably check again next frame once they're closer.
return false;
}
Vector3 hitpos = predicted_xform_B.xform(segment_hit_local);
real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]);
// Adding 1% of body length to the distance between collision and support point
// should cause body A's support point to arrive just within B's collider next frame.
newlen += (max - min) * 0.01;
// FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape.
p_A->set_linear_velocity((mnormal * newlen) / p_step);
return true;
}
real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) {
return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}
real_t combine_friction(GodotBody3D *A, GodotBody3D *B) {
return ABS(MIN(A->get_friction(), B->get_friction()));
}
bool GodotBodyPair3D::setup(real_t p_step) {
check_ccd = false;
if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
collided = false;
return false;
}
collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B);
collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A);
report_contacts_only = false;
if (!collide_A && !collide_B) {
if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
report_contacts_only = true;
} else {
collided = false;
return false;
}
}
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
validate_contacts();
const Vector3 &offset_A = A->get_transform().get_origin();
Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform3D xform_Bu = B->get_transform();
xform_Bu.origin -= offset_A;
Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);
GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
GodotShape3D *shape_B_ptr = B->get_shape(shape_B);
collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
if (!collided) {
if (A->is_continuous_collision_detection_enabled() && collide_A) {
check_ccd = true;
return true;
}
if (B->is_continuous_collision_detection_enabled() && collide_B) {
check_ccd = true;
return true;
}
return false;
}
return true;
}
bool GodotBodyPair3D::pre_solve(real_t p_step) {
if (!collided) {
if (check_ccd) {
const Vector3 &offset_A = A->get_transform().get_origin();
Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3());
Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform3D xform_Bu = B->get_transform();
xform_Bu.origin -= offset_A;
Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B);
if (A->is_continuous_collision_detection_enabled() && collide_A) {
_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
}
if (B->is_continuous_collision_detection_enabled() && collide_B) {
_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
}
}
return false;
}
real_t max_penetration = space->get_contact_max_allowed_penetration();
real_t bias = 0.8;
GodotShape3D *shape_A_ptr = A->get_shape(shape_A);
GodotShape3D *shape_B_ptr = B->get_shape(shape_B);
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
if (shape_A_ptr->get_custom_bias() == 0) {
bias = shape_B_ptr->get_custom_bias();
} else if (shape_B_ptr->get_custom_bias() == 0) {
bias = shape_A_ptr->get_custom_bias();
} else {
bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
}
}
real_t inv_dt = 1.0 / p_step;
bool do_process = false;
const Vector3 &offset_A = A->get_transform().get_origin();
const Basis &basis_A = A->get_transform().basis;
const Basis &basis_B = B->get_transform().basis;
Basis zero_basis;
zero_basis.set_zero();
const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
c.active = false;
Vector3 global_A = basis_A.xform(c.local_A);
Vector3 global_B = basis_B.xform(c.local_B) + offset_B;
Vector3 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth <= 0.0) {
continue;
}
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A + offset_A);
space->add_debug_contact(global_B + offset_A);
}
#endif
c.rA = global_A - A->get_center_of_mass();
c.rB = global_B - B->get_center_of_mass() - offset_B;
// Precompute normal mass, tangent mass, and bias.
Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal));
Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal));
real_t kNormal = inv_mass_A + inv_mass_B;
kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB));
c.mass_normal = 1.0f / kNormal;
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
c.depth = depth;
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
c.acc_impulse -= j_vec;
// contact query reporting...
if (A->can_report_contacts() || B->can_report_contacts()) {
Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity();
Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity();
if (A->can_report_contacts()) {
A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse);
}
if (B->can_report_contacts()) {
B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, -c.acc_impulse);
}
}
if (report_contacts_only) {
collided = false;
continue;
}
c.active = true;
do_process = true;
if (collide_A) {
A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass());
}
if (collide_B) {
B->apply_impulse(j_vec, c.rB + B->get_center_of_mass());
}
c.bounce = combine_bounce(A, B);
if (c.bounce) {
Vector3 crA = A->get_prev_angular_velocity().cross(c.rA);
Vector3 crB = B->get_prev_angular_velocity().cross(c.rB);
Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
c.bounce = c.bounce * dv.dot(c.normal);
}
}
return do_process;
}
void GodotBodyPair3D::solve(real_t p_step) {
if (!collided) {
return;
}
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
Basis zero_basis;
zero_basis.set_zero();
const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis;
const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis;
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (!c.active) {
continue;
}
c.active = false; //try to deactivate, will activate itself if still needed
//bias impulse
Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA);
Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB);
Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
real_t vbn = dbv.dot(c.normal);
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
real_t jbn = (-vbn + c.bias) * c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
if (collide_A) {
A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
}
if (collide_B) {
B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
}
crbA = A->get_biased_angular_velocity().cross(c.rA);
crbB = B->get_biased_angular_velocity().cross(c.rB);
dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
vbn = dbv.dot(c.normal);
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
if (collide_A) {
A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
}
if (collide_B) {
B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
}
}
c.active = true;
}
Vector3 crA = A->get_angular_velocity().cross(c.rA);
Vector3 crB = B->get_angular_velocity().cross(c.rB);
Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
//normal impulse
real_t vn = dv.dot(c.normal);
if (Math::abs(vn) > MIN_VELOCITY) {
real_t jn = -(c.bounce + vn) * c.mass_normal;
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);
if (collide_A) {
A->apply_impulse(-j, c.rA + A->get_center_of_mass());
}
if (collide_B) {
B->apply_impulse(j, c.rB + B->get_center_of_mass());
}
c.acc_impulse -= j;
c.active = true;
}
//friction impulse
real_t friction = combine_friction(A, B);
Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA);
Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB);
Vector3 dtv = lvB - lvA;
real_t tn = c.normal.dot(dtv);
// tangential velocity
Vector3 tv = dtv - c.normal * tn;
real_t tvl = tv.length();
if (tvl > MIN_VELOCITY) {
tv /= tvl;
Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv));
Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv));
real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB)));
Vector3 jt = t * tv;
Vector3 jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse += jt;
real_t fi_len = c.acc_tangent_impulse.length();
real_t jtMax = c.acc_normal_impulse * friction;
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
c.acc_tangent_impulse *= jtMax / fi_len;
}
jt = c.acc_tangent_impulse - jtOld;
if (collide_A) {
A->apply_impulse(-jt, c.rA + A->get_center_of_mass());
}
if (collide_B) {
B->apply_impulse(jt, c.rB + B->get_center_of_mass());
}
c.acc_impulse -= jt;
c.active = true;
}
}
}
GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) :
GodotBodyContact3D(_arr, 2) {
A = p_A;
B = p_B;
shape_A = p_shape_A;
shape_B = p_shape_B;
space = A->get_space();
A->add_constraint(this, 0);
B->add_constraint(this, 1);
}
GodotBodyPair3D::~GodotBodyPair3D() {
A->remove_constraint(this);
B->remove_constraint(this);
}
void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
GodotBodySoftBodyPair3D *pair = static_cast<GodotBodySoftBodyPair3D *>(p_userdata);
pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal);
}
void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) {
Vector3 local_A = body->get_inv_transform().xform(p_point_A);
Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B);
Contact contact;
contact.index_A = p_index_A;
contact.index_B = p_index_B;
contact.local_A = local_A;
contact.local_B = local_B;
contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal);
contact.used = true;
// Attempt to determine if the contact will be reused.
real_t contact_recycle_radius = space->get_contact_recycle_radius();
uint32_t contact_count = contacts.size();
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
Contact &c = contacts[contact_index];
if (c.index_B == p_index_B) {
if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) &&
c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) {
contact.acc_normal_impulse = c.acc_normal_impulse;
contact.acc_bias_impulse = c.acc_bias_impulse;
contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
contact.acc_tangent_impulse = c.acc_tangent_impulse;
}
c = contact;
return;
}
}
contacts.push_back(contact);
}
void GodotBodySoftBodyPair3D::validate_contacts() {
// Make sure to erase contacts that are no longer valid.
real_t max_separation = space->get_contact_max_separation();
real_t max_separation2 = max_separation * max_separation;
const Transform3D &transform_A = body->get_transform();
uint32_t contact_count = contacts.size();
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
Contact &c = contacts[contact_index];
bool erase = false;
if (!c.used) {
// Was left behind in previous frame.
erase = true;
} else {
c.used = false;
Vector3 global_A = transform_A.xform(c.local_A);
Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
Vector3 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
erase = true;
}
}
if (erase) {
// Contact no longer needed, remove.
if ((contact_index + 1) < contact_count) {
// Swap with the last one.
SWAP(c, contacts[contact_count - 1]);
}
contact_index--;
contact_count--;
}
}
contacts.resize(contact_count);
}
bool GodotBodySoftBodyPair3D::setup(real_t p_step) {
if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) {
collided = false;
return false;
}
body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body);
soft_body_collides = soft_body->collides_with(body);
if (!body_collides && !soft_body_collides) {
if (body->get_max_contacts_reported() > 0) {
report_contacts_only = true;
} else {
collided = false;
return false;
}
}
const Transform3D &xform_Au = body->get_transform();
Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape);
Transform3D xform_Bu = soft_body->get_transform();
Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0);
validate_contacts();
GodotShape3D *shape_A_ptr = body->get_shape(body_shape);
GodotShape3D *shape_B_ptr = soft_body->get_shape(0);
collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis);
return collided;
}
bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) {
if (!collided) {
return false;
}
real_t max_penetration = space->get_contact_max_allowed_penetration();
real_t bias = space->get_contact_bias();
GodotShape3D *shape_A_ptr = body->get_shape(body_shape);
if (shape_A_ptr->get_custom_bias()) {
bias = shape_A_ptr->get_custom_bias();
}
real_t inv_dt = 1.0 / p_step;
bool do_process = false;
const Transform3D &transform_A = body->get_transform();
Basis zero_basis;
zero_basis.set_zero();
const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;
real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;
uint32_t contact_count = contacts.size();
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
Contact &c = contacts[contact_index];
c.active = false;
real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;
if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) {
continue;
}
Vector3 global_A = transform_A.xform(c.local_A);
Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B;
Vector3 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth <= 0.0) {
continue;
}
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A);
space->add_debug_contact(global_B);
}
#endif
c.rA = global_A - transform_A.origin - body->get_center_of_mass();
c.rB = global_B;
// Precompute normal mass, tangent mass, and bias.
Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal));
real_t kNormal = body_inv_mass + node_inv_mass;
kNormal += c.normal.dot(inertia_A.cross(c.rA));
c.mass_normal = 1.0f / kNormal;
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
c.depth = depth;
Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse;
if (body_collides) {
body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass());
}
if (soft_body_collides) {
soft_body->apply_node_impulse(c.index_B, j_vec);
}
c.acc_impulse -= j_vec;
if (body->can_report_contacts()) {
Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity();
Vector3 crB = soft_body->get_node_velocity(c.index_B);
body->add_contact(global_A, -c.normal, depth, body_shape, crA, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crB, c.acc_impulse);
}
if (report_contacts_only) {
collided = false;
continue;
}
c.active = true;
do_process = true;
if (body_collides) {
body->set_active(true);
}
c.bounce = body->get_bounce();
if (c.bounce) {
Vector3 crA = body->get_angular_velocity().cross(c.rA);
Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;
// Normal impulse.
c.bounce = c.bounce * dv.dot(c.normal);
}
}
return do_process;
}
void GodotBodySoftBodyPair3D::solve(real_t p_step) {
if (!collided) {
return;
}
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
Basis zero_basis;
zero_basis.set_zero();
const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis;
real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0;
uint32_t contact_count = contacts.size();
for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) {
Contact &c = contacts[contact_index];
if (!c.active) {
continue;
}
c.active = false;
real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0;
// Bias impulse.
Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA);
Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;
real_t vbn = dbv.dot(c.normal);
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
real_t jbn = (-vbn + c.bias) * c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld);
if (body_collides) {
body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av);
}
if (soft_body_collides) {
soft_body->apply_node_bias_impulse(c.index_B, jb);
}
crbA = body->get_biased_angular_velocity().cross(c.rA);
dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA;
vbn = dbv.dot(c.normal);
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass);
real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
if (body_collides) {
body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f);
}
if (soft_body_collides) {
soft_body->apply_node_bias_impulse(c.index_B, jb_com);
}
}
c.active = true;
}
Vector3 crA = body->get_angular_velocity().cross(c.rA);
Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA;
// Normal impulse.
real_t vn = dv.dot(c.normal);
if (Math::abs(vn) > MIN_VELOCITY) {
real_t jn = -(c.bounce + vn) * c.mass_normal;
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
Vector3 j = c.normal * (c.acc_normal_impulse - jnOld);
if (body_collides) {
body->apply_impulse(-j, c.rA + body->get_center_of_mass());
}
if (soft_body_collides) {
soft_body->apply_node_impulse(c.index_B, j);
}
c.acc_impulse -= j;
c.active = true;
}
// Friction impulse.
real_t friction = body->get_friction();
Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA);
Vector3 lvB = soft_body->get_node_velocity(c.index_B);
Vector3 dtv = lvB - lvA;
real_t tn = c.normal.dot(dtv);
// Tangential velocity.
Vector3 tv = dtv - c.normal * tn;
real_t tvl = tv.length();
if (tvl > MIN_VELOCITY) {
tv /= tvl;
Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv));
real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA)));
Vector3 jt = t * tv;
Vector3 jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse += jt;
real_t fi_len = c.acc_tangent_impulse.length();
real_t jtMax = c.acc_normal_impulse * friction;
if (fi_len > CMP_EPSILON && fi_len > jtMax) {
c.acc_tangent_impulse *= jtMax / fi_len;
}
jt = c.acc_tangent_impulse - jtOld;
if (body_collides) {
body->apply_impulse(-jt, c.rA + body->get_center_of_mass());
}
if (soft_body_collides) {
soft_body->apply_node_impulse(c.index_B, jt);
}
c.acc_impulse -= jt;
c.active = true;
}
}
}
GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) :
GodotBodyContact3D(&body, 1) {
body = p_A;
soft_body = p_B;
body_shape = p_shape_A;
space = p_A->get_space();
body->add_constraint(this, 0);
soft_body->add_constraint(this);
}
GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() {
body->remove_constraint(this);
soft_body->remove_constraint(this);
}