godot-module-template/engine/doc/classes/Geometry3D.xml

154 lines
9.2 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Geometry3D" inherits="Object" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Provides methods for some common 3D geometric operations.
</brief_description>
<description>
Provides a set of helper functions to create geometric shapes, compute intersections between shapes, and process various other geometric operations in 3D.
</description>
<tutorials>
</tutorials>
<methods>
<method name="build_box_planes">
<return type="Plane[]" />
<param index="0" name="extents" type="Vector3" />
<description>
Returns an array with 6 [Plane]s that describe the sides of a box centered at the origin. The box size is defined by [param extents], which represents one (positive) corner of the box (i.e. half its actual size).
</description>
</method>
<method name="build_capsule_planes">
<return type="Plane[]" />
<param index="0" name="radius" type="float" />
<param index="1" name="height" type="float" />
<param index="2" name="sides" type="int" />
<param index="3" name="lats" type="int" />
<param index="4" name="axis" type="int" enum="Vector3.Axis" default="2" />
<description>
Returns an array of [Plane]s closely bounding a faceted capsule centered at the origin with radius [param radius] and height [param height]. The parameter [param sides] defines how many planes will be generated for the side part of the capsule, whereas [param lats] gives the number of latitudinal steps at the bottom and top of the capsule. The parameter [param axis] describes the axis along which the capsule is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="build_cylinder_planes">
<return type="Plane[]" />
<param index="0" name="radius" type="float" />
<param index="1" name="height" type="float" />
<param index="2" name="sides" type="int" />
<param index="3" name="axis" type="int" enum="Vector3.Axis" default="2" />
<description>
Returns an array of [Plane]s closely bounding a faceted cylinder centered at the origin with radius [param radius] and height [param height]. The parameter [param sides] defines how many planes will be generated for the round part of the cylinder. The parameter [param axis] describes the axis along which the cylinder is oriented (0 for X, 1 for Y, 2 for Z).
</description>
</method>
<method name="clip_polygon">
<return type="PackedVector3Array" />
<param index="0" name="points" type="PackedVector3Array" />
<param index="1" name="plane" type="Plane" />
<description>
Clips the polygon defined by the points in [param points] against the [param plane] and returns the points of the clipped polygon.
</description>
</method>
<method name="compute_convex_mesh_points">
<return type="PackedVector3Array" />
<param index="0" name="planes" type="Plane[]" />
<description>
Calculates and returns all the vertex points of a convex shape defined by an array of [param planes].
</description>
</method>
<method name="get_closest_point_to_segment">
<return type="Vector3" />
<param index="0" name="point" type="Vector3" />
<param index="1" name="s1" type="Vector3" />
<param index="2" name="s2" type="Vector3" />
<description>
Returns the 3D point on the 3D segment ([param s1], [param s2]) that is closest to [param point]. The returned point will always be inside the specified segment.
</description>
</method>
<method name="get_closest_point_to_segment_uncapped">
<return type="Vector3" />
<param index="0" name="point" type="Vector3" />
<param index="1" name="s1" type="Vector3" />
<param index="2" name="s2" type="Vector3" />
<description>
Returns the 3D point on the 3D line defined by ([param s1], [param s2]) that is closest to [param point]. The returned point can be inside the segment ([param s1], [param s2]) or outside of it, i.e. somewhere on the line extending from the segment.
</description>
</method>
<method name="get_closest_points_between_segments">
<return type="PackedVector3Array" />
<param index="0" name="p1" type="Vector3" />
<param index="1" name="p2" type="Vector3" />
<param index="2" name="q1" type="Vector3" />
<param index="3" name="q2" type="Vector3" />
<description>
Given the two 3D segments ([param p1], [param p2]) and ([param q1], [param q2]), finds those two points on the two segments that are closest to each other. Returns a [PackedVector3Array] that contains this point on ([param p1], [param p2]) as well the accompanying point on ([param q1], [param q2]).
</description>
</method>
<method name="get_triangle_barycentric_coords">
<return type="Vector3" />
<param index="0" name="point" type="Vector3" />
<param index="1" name="a" type="Vector3" />
<param index="2" name="b" type="Vector3" />
<param index="3" name="c" type="Vector3" />
<description>
Returns a [Vector3] containing weights based on how close a 3D position ([param point]) is to a triangle's different vertices ([param a], [param b] and [param c]). This is useful for interpolating between the data of different vertices in a triangle. One example use case is using this to smoothly rotate over a mesh instead of relying solely on face normals.
[url=https://en.wikipedia.org/wiki/Barycentric_coordinate_system]Here is a more detailed explanation of barycentric coordinates.[/url]
</description>
</method>
<method name="ray_intersects_triangle">
<return type="Variant" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="dir" type="Vector3" />
<param index="2" name="a" type="Vector3" />
<param index="3" name="b" type="Vector3" />
<param index="4" name="c" type="Vector3" />
<description>
Tests if the 3D ray starting at [param from] with the direction of [param dir] intersects the triangle specified by [param a], [param b] and [param c]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, returns [code]null[/code].
</description>
</method>
<method name="segment_intersects_convex">
<return type="PackedVector3Array" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="to" type="Vector3" />
<param index="2" name="planes" type="Plane[]" />
<description>
Given a convex hull defined though the [Plane]s in the array [param planes], tests if the segment ([param from], [param to]) intersects with that hull. If an intersection is found, returns a [PackedVector3Array] containing the point the intersection and the hull's normal. Otherwise, returns an empty array.
</description>
</method>
<method name="segment_intersects_cylinder">
<return type="PackedVector3Array" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="to" type="Vector3" />
<param index="2" name="height" type="float" />
<param index="3" name="radius" type="float" />
<description>
Checks if the segment ([param from], [param to]) intersects the cylinder with height [param height] that is centered at the origin and has radius [param radius]. If no, returns an empty [PackedVector3Array]. If an intersection takes place, the returned array contains the point of intersection and the cylinder's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_sphere">
<return type="PackedVector3Array" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="to" type="Vector3" />
<param index="2" name="sphere_position" type="Vector3" />
<param index="3" name="sphere_radius" type="float" />
<description>
Checks if the segment ([param from], [param to]) intersects the sphere that is located at [param sphere_position] and has radius [param sphere_radius]. If no, returns an empty [PackedVector3Array]. If yes, returns a [PackedVector3Array] containing the point of intersection and the sphere's normal at the point of intersection.
</description>
</method>
<method name="segment_intersects_triangle">
<return type="Variant" />
<param index="0" name="from" type="Vector3" />
<param index="1" name="to" type="Vector3" />
<param index="2" name="a" type="Vector3" />
<param index="3" name="b" type="Vector3" />
<param index="4" name="c" type="Vector3" />
<description>
Tests if the segment ([param from], [param to]) intersects the triangle [param a], [param b], [param c]. If yes, returns the point of intersection as [Vector3]. If no intersection takes place, returns [code]null[/code].
</description>
</method>
<method name="tetrahedralize_delaunay">
<return type="PackedInt32Array" />
<param index="0" name="points" type="PackedVector3Array" />
<description>
Tetrahedralizes the volume specified by a discrete set of [param points] in 3D space, ensuring that no point lies within the circumsphere of any resulting tetrahedron. The method returns a [PackedInt32Array] where each tetrahedron consists of four consecutive point indices into the [param points] array (resulting in an array with [code]n * 4[/code] elements, where [code]n[/code] is the number of tetrahedra found). If the tetrahedralization is unsuccessful, an empty [PackedInt32Array] is returned.
</description>
</method>
</methods>
</class>