godot-module-template/engine/thirdparty/icu4c/common/rbbitblb.cpp

1799 lines
63 KiB
C++
Raw Normal View History

2025-01-17 15:36:38 +00:00
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (c) 2002-2016, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
//
// rbbitblb.cpp
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_BREAK_ITERATION
#include "unicode/unistr.h"
#include "rbbitblb.h"
#include "rbbirb.h"
#include "rbbiscan.h"
#include "rbbisetb.h"
#include "rbbidata.h"
#include "cstring.h"
#include "uassert.h"
#include "uvectr32.h"
#include "cmemory.h"
U_NAMESPACE_BEGIN
const int32_t kMaxStateFor8BitsTable = 255;
RBBITableBuilder::RBBITableBuilder(RBBIRuleBuilder *rb, RBBINode **rootNode, UErrorCode &status) :
fRB(rb),
fTree(*rootNode),
fStatus(&status),
fDStates(nullptr),
fSafeTable(nullptr) {
if (U_FAILURE(status)) {
return;
}
// fDStates is UVector<RBBIStateDescriptor *>
fDStates = new UVector(status);
if (U_SUCCESS(status) && fDStates == nullptr ) {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
RBBITableBuilder::~RBBITableBuilder() {
int i;
for (i=0; i<fDStates->size(); i++) {
delete (RBBIStateDescriptor *)fDStates->elementAt(i);
}
delete fDStates;
delete fSafeTable;
delete fLookAheadRuleMap;
}
//-----------------------------------------------------------------------------
//
// RBBITableBuilder::buildForwardTable - This is the main function for building
// the DFA state transition table from the RBBI rules parse tree.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::buildForwardTable() {
if (U_FAILURE(*fStatus)) {
return;
}
// If there were no rules, just return. This situation can easily arise
// for the reverse rules.
if (fTree==nullptr) {
return;
}
//
// Walk through the tree, replacing any references to $variables with a copy of the
// parse tree for the substitution expression.
//
fTree = fTree->flattenVariables(*fStatus, 0);
if (U_FAILURE(*fStatus)) {
return;
}
#ifdef RBBI_DEBUG
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ftree")) {
RBBIDebugPuts("\nParse tree after flattening variable references.");
RBBINode::printTree(fTree, true);
}
#endif
//
// If the rules contained any references to {bof}
// add a {bof} <cat> <former root of tree> to the
// tree. Means that all matches must start out with the
// {bof} fake character.
//
if (fRB->fSetBuilder->sawBOF()) {
RBBINode *bofTop = new RBBINode(RBBINode::opCat);
RBBINode *bofLeaf = new RBBINode(RBBINode::leafChar);
// Delete and exit if memory allocation failed.
if (bofTop == nullptr || bofLeaf == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
delete bofTop;
delete bofLeaf;
return;
}
bofTop->fLeftChild = bofLeaf;
bofTop->fRightChild = fTree;
bofLeaf->fParent = bofTop;
bofLeaf->fVal = 2; // Reserved value for {bof}.
fTree = bofTop;
}
//
// Add a unique right-end marker to the expression.
// Appears as a cat-node, left child being the original tree,
// right child being the end marker.
//
RBBINode *cn = new RBBINode(RBBINode::opCat);
// Exit if memory allocation failed.
if (cn == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
cn->fLeftChild = fTree;
fTree->fParent = cn;
RBBINode *endMarkerNode = cn->fRightChild = new RBBINode(RBBINode::endMark);
// Delete and exit if memory allocation failed.
if (cn->fRightChild == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
delete cn;
return;
}
cn->fRightChild->fParent = cn;
fTree = cn;
//
// Replace all references to UnicodeSets with the tree for the equivalent
// expression.
//
fTree->flattenSets();
#ifdef RBBI_DEBUG
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "stree")) {
RBBIDebugPuts("\nParse tree after flattening Unicode Set references.");
RBBINode::printTree(fTree, true);
}
#endif
//
// calculate the functions nullable, firstpos, lastpos and followpos on
// nodes in the parse tree.
// See the algorithm description in Aho.
// Understanding how this works by looking at the code alone will be
// nearly impossible.
//
calcNullable(fTree);
calcFirstPos(fTree);
calcLastPos(fTree);
calcFollowPos(fTree);
if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "pos")) {
RBBIDebugPuts("\n");
printPosSets(fTree);
}
//
// For "chained" rules, modify the followPos sets
//
if (fRB->fChainRules) {
calcChainedFollowPos(fTree, endMarkerNode);
}
//
// BOF (start of input) test fixup.
//
if (fRB->fSetBuilder->sawBOF()) {
bofFixup();
}
//
// Build the DFA state transition tables.
//
buildStateTable();
mapLookAheadRules();
flagAcceptingStates();
flagLookAheadStates();
flagTaggedStates();
//
// Update the global table of rule status {tag} values
// The rule builder has a global vector of status values that are common
// for all tables. Merge the ones from this table into the global set.
//
mergeRuleStatusVals();
}
//-----------------------------------------------------------------------------
//
// calcNullable. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcNullable(RBBINode *n) {
if (n == nullptr) {
return;
}
if (n->fType == RBBINode::setRef ||
n->fType == RBBINode::endMark ) {
// These are non-empty leaf node types.
n->fNullable = false;
return;
}
if (n->fType == RBBINode::lookAhead || n->fType == RBBINode::tag) {
// Lookahead marker node. It's a leaf, so no recursion on children.
// It's nullable because it does not match any literal text from the input stream.
n->fNullable = true;
return;
}
// The node is not a leaf.
// Calculate nullable on its children.
calcNullable(n->fLeftChild);
calcNullable(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
n->fNullable = n->fLeftChild->fNullable || n->fRightChild->fNullable;
}
else if (n->fType == RBBINode::opCat) {
n->fNullable = n->fLeftChild->fNullable && n->fRightChild->fNullable;
}
else if (n->fType == RBBINode::opStar || n->fType == RBBINode::opQuestion) {
n->fNullable = true;
}
else {
n->fNullable = false;
}
}
//-----------------------------------------------------------------------------
//
// calcFirstPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFirstPos(RBBINode *n) {
if (n == nullptr) {
return;
}
if (n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark ||
n->fType == RBBINode::lookAhead ||
n->fType == RBBINode::tag) {
// These are non-empty leaf node types.
// Note: In order to maintain the sort invariant on the set,
// this function should only be called on a node whose set is
// empty to start with.
n->fFirstPosSet->addElement(n, *fStatus);
return;
}
// The node is not a leaf.
// Calculate firstPos on its children.
calcFirstPos(n->fLeftChild);
calcFirstPos(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
}
else if (n->fType == RBBINode::opCat) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
if (n->fLeftChild->fNullable) {
setAdd(n->fFirstPosSet, n->fRightChild->fFirstPosSet);
}
}
else if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opQuestion ||
n->fType == RBBINode::opPlus) {
setAdd(n->fFirstPosSet, n->fLeftChild->fFirstPosSet);
}
}
//-----------------------------------------------------------------------------
//
// calcLastPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcLastPos(RBBINode *n) {
if (n == nullptr) {
return;
}
if (n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark ||
n->fType == RBBINode::lookAhead ||
n->fType == RBBINode::tag) {
// These are non-empty leaf node types.
// Note: In order to maintain the sort invariant on the set,
// this function should only be called on a node whose set is
// empty to start with.
n->fLastPosSet->addElement(n, *fStatus);
return;
}
// The node is not a leaf.
// Calculate lastPos on its children.
calcLastPos(n->fLeftChild);
calcLastPos(n->fRightChild);
// Apply functions from table 3.40 in Aho
if (n->fType == RBBINode::opOr) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
}
else if (n->fType == RBBINode::opCat) {
setAdd(n->fLastPosSet, n->fRightChild->fLastPosSet);
if (n->fRightChild->fNullable) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
}
}
else if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opQuestion ||
n->fType == RBBINode::opPlus) {
setAdd(n->fLastPosSet, n->fLeftChild->fLastPosSet);
}
}
//-----------------------------------------------------------------------------
//
// calcFollowPos. Impossible to explain succinctly. See Aho, section 3.9
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcFollowPos(RBBINode *n) {
if (n == nullptr ||
n->fType == RBBINode::leafChar ||
n->fType == RBBINode::endMark) {
return;
}
calcFollowPos(n->fLeftChild);
calcFollowPos(n->fRightChild);
// Aho rule #1
if (n->fType == RBBINode::opCat) {
RBBINode *i; // is 'i' in Aho's description
uint32_t ix;
UVector *LastPosOfLeftChild = n->fLeftChild->fLastPosSet;
for (ix=0; ix<(uint32_t)LastPosOfLeftChild->size(); ix++) {
i = (RBBINode *)LastPosOfLeftChild->elementAt(ix);
setAdd(i->fFollowPos, n->fRightChild->fFirstPosSet);
}
}
// Aho rule #2
if (n->fType == RBBINode::opStar ||
n->fType == RBBINode::opPlus) {
RBBINode *i; // again, n and i are the names from Aho's description.
uint32_t ix;
for (ix=0; ix<(uint32_t)n->fLastPosSet->size(); ix++) {
i = (RBBINode *)n->fLastPosSet->elementAt(ix);
setAdd(i->fFollowPos, n->fFirstPosSet);
}
}
}
//-----------------------------------------------------------------------------
//
// addRuleRootNodes Recursively walk a parse tree, adding all nodes flagged
// as roots of a rule to a destination vector.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::addRuleRootNodes(UVector *dest, RBBINode *node) {
if (node == nullptr || U_FAILURE(*fStatus)) {
return;
}
U_ASSERT(!dest->hasDeleter());
if (node->fRuleRoot) {
dest->addElement(node, *fStatus);
// Note: rules cannot nest. If we found a rule start node,
// no child node can also be a start node.
return;
}
addRuleRootNodes(dest, node->fLeftChild);
addRuleRootNodes(dest, node->fRightChild);
}
//-----------------------------------------------------------------------------
//
// calcChainedFollowPos. Modify the previously calculated followPos sets
// to implement rule chaining. NOT described by Aho
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::calcChainedFollowPos(RBBINode *tree, RBBINode *endMarkNode) {
UVector leafNodes(*fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
// get a list all leaf nodes
tree->findNodes(&leafNodes, RBBINode::leafChar, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
// Collect all leaf nodes that can start matches for rules
// with inbound chaining enabled, which is the union of the
// firstPosition sets from each of the rule root nodes.
UVector ruleRootNodes(*fStatus);
addRuleRootNodes(&ruleRootNodes, tree);
UVector matchStartNodes(*fStatus);
for (int j=0; j<ruleRootNodes.size(); ++j) {
RBBINode *node = static_cast<RBBINode *>(ruleRootNodes.elementAt(j));
if (node->fChainIn) {
setAdd(&matchStartNodes, node->fFirstPosSet);
}
}
if (U_FAILURE(*fStatus)) {
return;
}
int32_t endNodeIx;
int32_t startNodeIx;
for (endNodeIx=0; endNodeIx<leafNodes.size(); endNodeIx++) {
RBBINode *endNode = (RBBINode *)leafNodes.elementAt(endNodeIx);
// Identify leaf nodes that correspond to overall rule match positions.
// These include the endMarkNode in their followPos sets.
//
// Note: do not consider other end marker nodes, those that are added to
// look-ahead rules. These can't chain; a match immediately stops
// further matching. This leaves exactly one end marker node, the one
// at the end of the complete tree.
if (!endNode->fFollowPos->contains(endMarkNode)) {
continue;
}
// We've got a node that can end a match.
// Now iterate over the nodes that can start a match, looking for ones
// with the same char class as our ending node.
RBBINode *startNode;
for (startNodeIx = 0; startNodeIx<matchStartNodes.size(); startNodeIx++) {
startNode = (RBBINode *)matchStartNodes.elementAt(startNodeIx);
if (startNode->fType != RBBINode::leafChar) {
continue;
}
if (endNode->fVal == startNode->fVal) {
// The end val (character class) of one possible match is the
// same as the start of another.
// Add all nodes from the followPos of the start node to the
// followPos set of the end node, which will have the effect of
// letting matches transition from a match state at endNode
// to the second char of a match starting with startNode.
setAdd(endNode->fFollowPos, startNode->fFollowPos);
}
}
}
}
//-----------------------------------------------------------------------------
//
// bofFixup. Fixup for state tables that include {bof} beginning of input testing.
// Do an swizzle similar to chaining, modifying the followPos set of
// the bofNode to include the followPos nodes from other {bot} nodes
// scattered through the tree.
//
// This function has much in common with calcChainedFollowPos().
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::bofFixup() {
if (U_FAILURE(*fStatus)) {
return;
}
// The parse tree looks like this ...
// fTree root ---> <cat>
// / \ .
// <cat> <#end node>
// / \ .
// <bofNode> rest
// of tree
//
// We will be adding things to the followPos set of the <bofNode>
//
RBBINode *bofNode = fTree->fLeftChild->fLeftChild;
U_ASSERT(bofNode->fType == RBBINode::leafChar);
U_ASSERT(bofNode->fVal == 2);
// Get all nodes that can be the start a match of the user-written rules
// (excluding the fake bofNode)
// We want the nodes that can start a match in the
// part labeled "rest of tree"
//
UVector *matchStartNodes = fTree->fLeftChild->fRightChild->fFirstPosSet;
RBBINode *startNode;
int startNodeIx;
for (startNodeIx = 0; startNodeIx<matchStartNodes->size(); startNodeIx++) {
startNode = (RBBINode *)matchStartNodes->elementAt(startNodeIx);
if (startNode->fType != RBBINode::leafChar) {
continue;
}
if (startNode->fVal == bofNode->fVal) {
// We found a leaf node corresponding to a {bof} that was
// explicitly written into a rule.
// Add everything from the followPos set of this node to the
// followPos set of the fake bofNode at the start of the tree.
//
setAdd(bofNode->fFollowPos, startNode->fFollowPos);
}
}
}
//-----------------------------------------------------------------------------
//
// buildStateTable() Determine the set of runtime DFA states and the
// transition tables for these states, by the algorithm
// of fig. 3.44 in Aho.
//
// Most of the comments are quotes of Aho's psuedo-code.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::buildStateTable() {
if (U_FAILURE(*fStatus)) {
return;
}
RBBIStateDescriptor *failState;
// Set it to nullptr to avoid uninitialized warning
RBBIStateDescriptor *initialState = nullptr;
//
// Add a dummy state 0 - the stop state. Not from Aho.
int lastInputSymbol = fRB->fSetBuilder->getNumCharCategories() - 1;
failState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
if (failState == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
goto ExitBuildSTdeleteall;
}
failState->fPositions = new UVector(*fStatus);
if (failState->fPositions == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
}
if (failState->fPositions == nullptr || U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
fDStates->addElement(failState, *fStatus);
if (U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
// initially, the only unmarked state in Dstates is firstpos(root),
// where toot is the root of the syntax tree for (r)#;
initialState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
if (initialState == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
initialState->fPositions = new UVector(*fStatus);
if (initialState->fPositions == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
setAdd(initialState->fPositions, fTree->fFirstPosSet);
fDStates->addElement(initialState, *fStatus);
if (U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
// while there is an unmarked state T in Dstates do begin
for (;;) {
RBBIStateDescriptor *T = nullptr;
int32_t tx;
for (tx=1; tx<fDStates->size(); tx++) {
RBBIStateDescriptor *temp;
temp = (RBBIStateDescriptor *)fDStates->elementAt(tx);
if (temp->fMarked == false) {
T = temp;
break;
}
}
if (T == nullptr) {
break;
}
// mark T;
T->fMarked = true;
// for each input symbol a do begin
int32_t a;
for (a = 1; a<=lastInputSymbol; a++) {
// let U be the set of positions that are in followpos(p)
// for some position p in T
// such that the symbol at position p is a;
UVector *U = nullptr;
RBBINode *p;
int32_t px;
for (px=0; px<T->fPositions->size(); px++) {
p = (RBBINode *)T->fPositions->elementAt(px);
if ((p->fType == RBBINode::leafChar) && (p->fVal == a)) {
if (U == nullptr) {
U = new UVector(*fStatus);
if (U == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
goto ExitBuildSTdeleteall;
}
}
setAdd(U, p->fFollowPos);
}
}
// if U is not empty and not in DStates then
int32_t ux = 0;
UBool UinDstates = false;
if (U != nullptr) {
U_ASSERT(U->size() > 0);
int ix;
for (ix=0; ix<fDStates->size(); ix++) {
RBBIStateDescriptor *temp2;
temp2 = (RBBIStateDescriptor *)fDStates->elementAt(ix);
if (setEquals(U, temp2->fPositions)) {
delete U;
U = temp2->fPositions;
ux = ix;
UinDstates = true;
break;
}
}
// Add U as an unmarked state to Dstates
if (!UinDstates)
{
RBBIStateDescriptor *newState = new RBBIStateDescriptor(lastInputSymbol, fStatus);
if (newState == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(*fStatus)) {
goto ExitBuildSTdeleteall;
}
newState->fPositions = U;
fDStates->addElement(newState, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
ux = fDStates->size()-1;
}
// Dtran[T, a] := U;
T->fDtran->setElementAt(ux, a);
}
}
}
return;
// delete local pointers only if error occurred.
ExitBuildSTdeleteall:
delete initialState;
delete failState;
}
/**
* mapLookAheadRules
*
*/
void RBBITableBuilder::mapLookAheadRules() {
fLookAheadRuleMap = new UVector32(fRB->fScanner->numRules() + 1, *fStatus);
if (fLookAheadRuleMap == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(*fStatus)) {
return;
}
fLookAheadRuleMap->setSize(fRB->fScanner->numRules() + 1);
for (int32_t n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
int32_t laSlotForState = 0;
// Establish the look-ahead slot for this state, if the state covers
// any look-ahead nodes - corresponding to the '/' in look-ahead rules.
// If any of the look-ahead nodes already have a slot assigned, use it,
// otherwise assign a new one.
bool sawLookAheadNode = false;
for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) {
RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos));
if (node->fType != RBBINode::NodeType::lookAhead) {
continue;
}
sawLookAheadNode = true;
int32_t ruleNum = node->fVal; // Set when rule was originally parsed.
U_ASSERT(ruleNum < fLookAheadRuleMap->size());
U_ASSERT(ruleNum > 0);
int32_t laSlot = fLookAheadRuleMap->elementAti(ruleNum);
if (laSlot != 0) {
if (laSlotForState == 0) {
laSlotForState = laSlot;
} else {
// TODO: figure out if this can fail, change to setting an error code if so.
U_ASSERT(laSlot == laSlotForState);
}
}
}
if (!sawLookAheadNode) {
continue;
}
if (laSlotForState == 0) {
laSlotForState = ++fLASlotsInUse;
}
// For each look ahead node covered by this state,
// set the mapping from the node's rule number to the look ahead slot.
// There can be multiple nodes/rule numbers going to the same la slot.
for (int32_t ipos=0; ipos<sd->fPositions->size(); ++ipos) {
RBBINode *node = static_cast<RBBINode *>(sd->fPositions->elementAt(ipos));
if (node->fType != RBBINode::NodeType::lookAhead) {
continue;
}
int32_t ruleNum = node->fVal; // Set when rule was originally parsed.
int32_t existingVal = fLookAheadRuleMap->elementAti(ruleNum);
(void)existingVal;
U_ASSERT(existingVal == 0 || existingVal == laSlotForState);
fLookAheadRuleMap->setElementAt(laSlotForState, ruleNum);
}
}
}
//-----------------------------------------------------------------------------
//
// flagAcceptingStates Identify accepting states.
// First get a list of all of the end marker nodes.
// Then, for each state s,
// if s contains one of the end marker nodes in its list of tree positions then
// s is an accepting state.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagAcceptingStates() {
if (U_FAILURE(*fStatus)) {
return;
}
UVector endMarkerNodes(*fStatus);
RBBINode *endMarker;
int32_t i;
int32_t n;
if (U_FAILURE(*fStatus)) {
return;
}
fTree->findNodes(&endMarkerNodes, RBBINode::endMark, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
for (i=0; i<endMarkerNodes.size(); i++) {
endMarker = (RBBINode *)endMarkerNodes.elementAt(i);
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
if (sd->fPositions->indexOf(endMarker) >= 0) {
// Any non-zero value for fAccepting means this is an accepting node.
// The value is what will be returned to the user as the break status.
// If no other value was specified, force it to ACCEPTING_UNCONDITIONAL (1).
if (sd->fAccepting==0) {
// State hasn't been marked as accepting yet. Do it now.
sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal);
if (sd->fAccepting == 0) {
sd->fAccepting = ACCEPTING_UNCONDITIONAL;
}
}
if (sd->fAccepting==ACCEPTING_UNCONDITIONAL && endMarker->fVal != 0) {
// Both lookahead and non-lookahead accepting for this state.
// Favor the look-ahead, because a look-ahead match needs to
// immediately stop the run-time engine. First match, not longest.
sd->fAccepting = fLookAheadRuleMap->elementAti(endMarker->fVal);
}
// implicit else:
// if sd->fAccepting already had a value other than 0 or 1, leave it be.
}
}
}
}
//-----------------------------------------------------------------------------
//
// flagLookAheadStates Very similar to flagAcceptingStates, above.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagLookAheadStates() {
if (U_FAILURE(*fStatus)) {
return;
}
UVector lookAheadNodes(*fStatus);
RBBINode *lookAheadNode;
int32_t i;
int32_t n;
fTree->findNodes(&lookAheadNodes, RBBINode::lookAhead, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
for (i=0; i<lookAheadNodes.size(); i++) {
lookAheadNode = (RBBINode *)lookAheadNodes.elementAt(i);
U_ASSERT(lookAheadNode->fType == RBBINode::NodeType::lookAhead);
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
int32_t positionsIdx = sd->fPositions->indexOf(lookAheadNode);
if (positionsIdx >= 0) {
U_ASSERT(lookAheadNode == sd->fPositions->elementAt(positionsIdx));
uint32_t lookaheadSlot = fLookAheadRuleMap->elementAti(lookAheadNode->fVal);
U_ASSERT(sd->fLookAhead == 0 || sd->fLookAhead == lookaheadSlot);
// if (sd->fLookAhead != 0 && sd->fLookAhead != lookaheadSlot) {
// printf("%s:%d Bingo. sd->fLookAhead:%d lookaheadSlot:%d\n",
// __FILE__, __LINE__, sd->fLookAhead, lookaheadSlot);
// }
sd->fLookAhead = lookaheadSlot;
}
}
}
}
//-----------------------------------------------------------------------------
//
// flagTaggedStates
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::flagTaggedStates() {
if (U_FAILURE(*fStatus)) {
return;
}
UVector tagNodes(*fStatus);
RBBINode *tagNode;
int32_t i;
int32_t n;
if (U_FAILURE(*fStatus)) {
return;
}
fTree->findNodes(&tagNodes, RBBINode::tag, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
for (i=0; i<tagNodes.size(); i++) { // For each tag node t (all of 'em)
tagNode = (RBBINode *)tagNodes.elementAt(i);
for (n=0; n<fDStates->size(); n++) { // For each state s (row in the state table)
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
if (sd->fPositions->indexOf(tagNode) >= 0) { // if s include the tag node t
sortedAdd(&sd->fTagVals, tagNode->fVal);
}
}
}
}
//-----------------------------------------------------------------------------
//
// mergeRuleStatusVals
//
// Update the global table of rule status {tag} values
// The rule builder has a global vector of status values that are common
// for all tables. Merge the ones from this table into the global set.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::mergeRuleStatusVals() {
//
// The basic outline of what happens here is this...
//
// for each state in this state table
// if the status tag list for this state is in the global statuses list
// record where and
// continue with the next state
// else
// add the tag list for this state to the global list.
//
int i;
int n;
// Pre-set a single tag of {0} into the table.
// We will need this as a default, for rule sets with no explicit tagging.
if (fRB->fRuleStatusVals->size() == 0) {
fRB->fRuleStatusVals->addElement(1, *fStatus); // Num of statuses in group
fRB->fRuleStatusVals->addElement((int32_t)0, *fStatus); // and our single status of zero
}
// For each state
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
UVector *thisStatesTagValues = sd->fTagVals;
if (thisStatesTagValues == nullptr) {
// No tag values are explicitly associated with this state.
// Set the default tag value.
sd->fTagsIdx = 0;
continue;
}
// There are tag(s) associated with this state.
// fTagsIdx will be the index into the global tag list for this state's tag values.
// Initial value of -1 flags that we haven't got it set yet.
sd->fTagsIdx = -1;
int32_t thisTagGroupStart = 0; // indexes into the global rule status vals list
int32_t nextTagGroupStart = 0;
// Loop runs once per group of tags in the global list
while (nextTagGroupStart < fRB->fRuleStatusVals->size()) {
thisTagGroupStart = nextTagGroupStart;
nextTagGroupStart += fRB->fRuleStatusVals->elementAti(thisTagGroupStart) + 1;
if (thisStatesTagValues->size() != fRB->fRuleStatusVals->elementAti(thisTagGroupStart)) {
// The number of tags for this state is different from
// the number of tags in this group from the global list.
// Continue with the next group from the global list.
continue;
}
// The lengths match, go ahead and compare the actual tag values
// between this state and the group from the global list.
for (i=0; i<thisStatesTagValues->size(); i++) {
if (thisStatesTagValues->elementAti(i) !=
fRB->fRuleStatusVals->elementAti(thisTagGroupStart + 1 + i) ) {
// Mismatch.
break;
}
}
if (i == thisStatesTagValues->size()) {
// We found a set of tag values in the global list that match
// those for this state. Use them.
sd->fTagsIdx = thisTagGroupStart;
break;
}
}
if (sd->fTagsIdx == -1) {
// No suitable entry in the global tag list already. Add one
sd->fTagsIdx = fRB->fRuleStatusVals->size();
fRB->fRuleStatusVals->addElement(thisStatesTagValues->size(), *fStatus);
for (i=0; i<thisStatesTagValues->size(); i++) {
fRB->fRuleStatusVals->addElement(thisStatesTagValues->elementAti(i), *fStatus);
}
}
}
}
//-----------------------------------------------------------------------------
//
// sortedAdd Add a value to a vector of sorted values (ints).
// Do not replicate entries; if the value is already there, do not
// add a second one.
// Lazily create the vector if it does not already exist.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::sortedAdd(UVector **vector, int32_t val) {
int32_t i;
if (*vector == nullptr) {
*vector = new UVector(*fStatus);
}
if (*vector == nullptr || U_FAILURE(*fStatus)) {
return;
}
UVector *vec = *vector;
int32_t vSize = vec->size();
for (i=0; i<vSize; i++) {
int32_t valAtI = vec->elementAti(i);
if (valAtI == val) {
// The value is already in the vector. Don't add it again.
return;
}
if (valAtI > val) {
break;
}
}
vec->insertElementAt(val, i, *fStatus);
}
//-----------------------------------------------------------------------------
//
// setAdd Set operation on UVector
// dest = dest union source
// Elements may only appear once and must be sorted.
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::setAdd(UVector *dest, UVector *source) {
U_ASSERT(!dest->hasDeleter());
U_ASSERT(!source->hasDeleter());
int32_t destOriginalSize = dest->size();
int32_t sourceSize = source->size();
int32_t di = 0;
MaybeStackArray<void *, 16> destArray, sourceArray; // Handle small cases without malloc
void **destPtr, **sourcePtr;
void **destLim, **sourceLim;
if (destOriginalSize > destArray.getCapacity()) {
if (destArray.resize(destOriginalSize) == nullptr) {
return;
}
}
destPtr = destArray.getAlias();
destLim = destPtr + destOriginalSize; // destArray.getArrayLimit()?
if (sourceSize > sourceArray.getCapacity()) {
if (sourceArray.resize(sourceSize) == nullptr) {
return;
}
}
sourcePtr = sourceArray.getAlias();
sourceLim = sourcePtr + sourceSize; // sourceArray.getArrayLimit()?
// Avoid multiple "get element" calls by getting the contents into arrays
(void) dest->toArray(destPtr);
(void) source->toArray(sourcePtr);
dest->setSize(sourceSize+destOriginalSize, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
while (sourcePtr < sourceLim && destPtr < destLim) {
if (*destPtr == *sourcePtr) {
dest->setElementAt(*sourcePtr++, di++);
destPtr++;
}
// This check is required for machines with segmented memory, like i5/OS.
// Direct pointer comparison is not recommended.
else if (uprv_memcmp(destPtr, sourcePtr, sizeof(void *)) < 0) {
dest->setElementAt(*destPtr++, di++);
}
else { /* *sourcePtr < *destPtr */
dest->setElementAt(*sourcePtr++, di++);
}
}
// At most one of these two cleanup loops will execute
while (destPtr < destLim) {
dest->setElementAt(*destPtr++, di++);
}
while (sourcePtr < sourceLim) {
dest->setElementAt(*sourcePtr++, di++);
}
dest->setSize(di, *fStatus);
}
//-----------------------------------------------------------------------------
//
// setEqual Set operation on UVector.
// Compare for equality.
// Elements must be sorted.
//
//-----------------------------------------------------------------------------
UBool RBBITableBuilder::setEquals(UVector *a, UVector *b) {
return a->equals(*b);
}
//-----------------------------------------------------------------------------
//
// printPosSets Debug function. Dump Nullable, firstpos, lastpos and followpos
// for each node in the tree.
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printPosSets(RBBINode *n) {
if (n==nullptr) {
return;
}
printf("\n");
RBBINode::printNodeHeader();
RBBINode::printNode(n);
RBBIDebugPrintf(" Nullable: %s\n", n->fNullable?"true":"false");
RBBIDebugPrintf(" firstpos: ");
printSet(n->fFirstPosSet);
RBBIDebugPrintf(" lastpos: ");
printSet(n->fLastPosSet);
RBBIDebugPrintf(" followpos: ");
printSet(n->fFollowPos);
printPosSets(n->fLeftChild);
printPosSets(n->fRightChild);
}
#endif
//
// findDuplCharClassFrom()
//
bool RBBITableBuilder::findDuplCharClassFrom(IntPair *categories) {
int32_t numStates = fDStates->size();
int32_t numCols = fRB->fSetBuilder->getNumCharCategories();
for (; categories->first < numCols-1; categories->first++) {
// Note: dictionary & non-dictionary columns cannot be merged.
// The limitSecond value prevents considering mixed pairs.
// Dictionary categories are >= DictCategoriesStart.
// Non dict categories are < DictCategoriesStart.
int limitSecond = categories->first < fRB->fSetBuilder->getDictCategoriesStart() ?
fRB->fSetBuilder->getDictCategoriesStart() : numCols;
for (categories->second=categories->first+1; categories->second < limitSecond; categories->second++) {
// Initialized to different values to prevent returning true if numStates = 0 (implies no duplicates).
uint16_t table_base = 0;
uint16_t table_dupl = 1;
for (int32_t state=0; state<numStates; state++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
table_base = (uint16_t)sd->fDtran->elementAti(categories->first);
table_dupl = (uint16_t)sd->fDtran->elementAti(categories->second);
if (table_base != table_dupl) {
break;
}
}
if (table_base == table_dupl) {
return true;
}
}
}
return false;
}
//
// removeColumn()
//
void RBBITableBuilder::removeColumn(int32_t column) {
int32_t numStates = fDStates->size();
for (int32_t state=0; state<numStates; state++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
U_ASSERT(column < sd->fDtran->size());
sd->fDtran->removeElementAt(column);
}
}
/*
* findDuplicateState
*/
bool RBBITableBuilder::findDuplicateState(IntPair *states) {
int32_t numStates = fDStates->size();
int32_t numCols = fRB->fSetBuilder->getNumCharCategories();
for (; states->first<numStates-1; states->first++) {
RBBIStateDescriptor *firstSD = (RBBIStateDescriptor *)fDStates->elementAt(states->first);
for (states->second=states->first+1; states->second<numStates; states->second++) {
RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(states->second);
if (firstSD->fAccepting != duplSD->fAccepting ||
firstSD->fLookAhead != duplSD->fLookAhead ||
firstSD->fTagsIdx != duplSD->fTagsIdx) {
continue;
}
bool rowsMatch = true;
for (int32_t col=0; col < numCols; ++col) {
int32_t firstVal = firstSD->fDtran->elementAti(col);
int32_t duplVal = duplSD->fDtran->elementAti(col);
if (!((firstVal == duplVal) ||
((firstVal == states->first || firstVal == states->second) &&
(duplVal == states->first || duplVal == states->second)))) {
rowsMatch = false;
break;
}
}
if (rowsMatch) {
return true;
}
}
}
return false;
}
bool RBBITableBuilder::findDuplicateSafeState(IntPair *states) {
int32_t numStates = fSafeTable->size();
for (; states->first<numStates-1; states->first++) {
UnicodeString *firstRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->first));
for (states->second=states->first+1; states->second<numStates; states->second++) {
UnicodeString *duplRow = static_cast<UnicodeString *>(fSafeTable->elementAt(states->second));
bool rowsMatch = true;
int32_t numCols = firstRow->length();
for (int32_t col=0; col < numCols; ++col) {
int32_t firstVal = firstRow->charAt(col);
int32_t duplVal = duplRow->charAt(col);
if (!((firstVal == duplVal) ||
((firstVal == states->first || firstVal == states->second) &&
(duplVal == states->first || duplVal == states->second)))) {
rowsMatch = false;
break;
}
}
if (rowsMatch) {
return true;
}
}
}
return false;
}
void RBBITableBuilder::removeState(IntPair duplStates) {
const int32_t keepState = duplStates.first;
const int32_t duplState = duplStates.second;
U_ASSERT(keepState < duplState);
U_ASSERT(duplState < fDStates->size());
RBBIStateDescriptor *duplSD = (RBBIStateDescriptor *)fDStates->elementAt(duplState);
fDStates->removeElementAt(duplState);
delete duplSD;
int32_t numStates = fDStates->size();
int32_t numCols = fRB->fSetBuilder->getNumCharCategories();
for (int32_t state=0; state<numStates; ++state) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
for (int32_t col=0; col<numCols; col++) {
int32_t existingVal = sd->fDtran->elementAti(col);
int32_t newVal = existingVal;
if (existingVal == duplState) {
newVal = keepState;
} else if (existingVal > duplState) {
newVal = existingVal - 1;
}
sd->fDtran->setElementAt(newVal, col);
}
}
}
void RBBITableBuilder::removeSafeState(IntPair duplStates) {
const int32_t keepState = duplStates.first;
const int32_t duplState = duplStates.second;
U_ASSERT(keepState < duplState);
U_ASSERT(duplState < fSafeTable->size());
fSafeTable->removeElementAt(duplState); // Note that fSafeTable has a deleter function
// and will auto-delete the removed element.
int32_t numStates = fSafeTable->size();
for (int32_t state=0; state<numStates; ++state) {
UnicodeString *sd = (UnicodeString *)fSafeTable->elementAt(state);
int32_t numCols = sd->length();
for (int32_t col=0; col<numCols; col++) {
int32_t existingVal = sd->charAt(col);
int32_t newVal = existingVal;
if (existingVal == duplState) {
newVal = keepState;
} else if (existingVal > duplState) {
newVal = existingVal - 1;
}
sd->setCharAt(col, static_cast<char16_t>(newVal));
}
}
}
/*
* RemoveDuplicateStates
*/
int32_t RBBITableBuilder::removeDuplicateStates() {
IntPair dupls = {3, 0};
int32_t numStatesRemoved = 0;
while (findDuplicateState(&dupls)) {
// printf("Removing duplicate states (%d, %d)\n", dupls.first, dupls.second);
removeState(dupls);
++numStatesRemoved;
}
return numStatesRemoved;
}
//-----------------------------------------------------------------------------
//
// getTableSize() Calculate the size of the runtime form of this
// state transition table.
//
//-----------------------------------------------------------------------------
int32_t RBBITableBuilder::getTableSize() const {
int32_t size = 0;
int32_t numRows;
int32_t numCols;
int32_t rowSize;
if (fTree == nullptr) {
return 0;
}
size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table.
numRows = fDStates->size();
numCols = fRB->fSetBuilder->getNumCharCategories();
if (use8BitsForTable()) {
rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols;
} else {
rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols;
}
size += numRows * rowSize;
return size;
}
bool RBBITableBuilder::use8BitsForTable() const {
return fDStates->size() <= kMaxStateFor8BitsTable;
}
//-----------------------------------------------------------------------------
//
// exportTable() export the state transition table in the format required
// by the runtime engine. getTableSize() bytes of memory
// must be available at the output address "where".
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::exportTable(void *where) {
RBBIStateTable *table = (RBBIStateTable *)where;
uint32_t state;
int col;
if (U_FAILURE(*fStatus) || fTree == nullptr) {
return;
}
int32_t catCount = fRB->fSetBuilder->getNumCharCategories();
if (catCount > 0x7fff ||
fDStates->size() > 0x7fff) {
*fStatus = U_BRK_INTERNAL_ERROR;
return;
}
table->fNumStates = fDStates->size();
table->fDictCategoriesStart = fRB->fSetBuilder->getDictCategoriesStart();
table->fLookAheadResultsSize = fLASlotsInUse == ACCEPTING_UNCONDITIONAL ? 0 : fLASlotsInUse + 1;
table->fFlags = 0;
if (use8BitsForTable()) {
table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount;
table->fFlags |= RBBI_8BITS_ROWS;
} else {
table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount;
}
if (fRB->fLookAheadHardBreak) {
table->fFlags |= RBBI_LOOKAHEAD_HARD_BREAK;
}
if (fRB->fSetBuilder->sawBOF()) {
table->fFlags |= RBBI_BOF_REQUIRED;
}
for (state=0; state<table->fNumStates; state++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(state);
RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
if (use8BitsForTable()) {
U_ASSERT (sd->fAccepting <= 255);
U_ASSERT (sd->fLookAhead <= 255);
U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 255);
RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row;
r8->fAccepting = sd->fAccepting;
r8->fLookAhead = sd->fLookAhead;
r8->fTagsIdx = sd->fTagsIdx;
for (col=0; col<catCount; col++) {
U_ASSERT (sd->fDtran->elementAti(col) <= kMaxStateFor8BitsTable);
r8->fNextState[col] = sd->fDtran->elementAti(col);
}
} else {
U_ASSERT (sd->fAccepting <= 0xffff);
U_ASSERT (sd->fLookAhead <= 0xffff);
U_ASSERT (0 <= sd->fTagsIdx && sd->fTagsIdx <= 0xffff);
row->r16.fAccepting = sd->fAccepting;
row->r16.fLookAhead = sd->fLookAhead;
row->r16.fTagsIdx = sd->fTagsIdx;
for (col=0; col<catCount; col++) {
row->r16.fNextState[col] = sd->fDtran->elementAti(col);
}
}
}
}
/**
* Synthesize a safe state table from the main state table.
*/
void RBBITableBuilder::buildSafeReverseTable(UErrorCode &status) {
// The safe table creation has three steps:
// 1. Identify pairs of character classes that are "safe." Safe means that boundaries
// following the pair do not depend on context or state before the pair. To test
// whether a pair is safe, run it through the main forward state table, starting
// from each state. If the the final state is the same, no matter what the starting state,
// the pair is safe.
//
// 2. Build a state table that recognizes the safe pairs. It's similar to their
// forward table, with a column for each input character [class], and a row for
// each state. Row 1 is the start state, and row 0 is the stop state. Initially
// create an additional state for each input character category; being in
// one of these states means that the character has been seen, and is potentially
// the first of a pair. In each of these rows, the entry for the second character
// of a safe pair is set to the stop state (0), indicating that a match was found.
// All other table entries are set to the state corresponding the current input
// character, allowing that character to be the of a start following pair.
//
// Because the safe rules are to be run in reverse, moving backwards in the text,
// the first and second pair categories are swapped when building the table.
//
// 3. Compress the table. There are typically many rows (states) that are
// equivalent - that have zeroes (match completed) in the same columns -
// and can be folded together.
// Each safe pair is stored as two UChars in the safePair string.
UnicodeString safePairs;
int32_t numCharClasses = fRB->fSetBuilder->getNumCharCategories();
int32_t numStates = fDStates->size();
for (int32_t c1=0; c1<numCharClasses; ++c1) {
for (int32_t c2=0; c2 < numCharClasses; ++c2) {
int32_t wantedEndState = -1;
int32_t endState = 0;
for (int32_t startState = 1; startState < numStates; ++startState) {
RBBIStateDescriptor *startStateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(startState));
int32_t s2 = startStateD->fDtran->elementAti(c1);
RBBIStateDescriptor *s2StateD = static_cast<RBBIStateDescriptor *>(fDStates->elementAt(s2));
endState = s2StateD->fDtran->elementAti(c2);
if (wantedEndState < 0) {
wantedEndState = endState;
} else {
if (wantedEndState != endState) {
break;
}
}
}
if (wantedEndState == endState) {
safePairs.append((char16_t)c1);
safePairs.append((char16_t)c2);
// printf("(%d, %d) ", c1, c2);
}
}
// printf("\n");
}
// Populate the initial safe table.
// The table as a whole is UVector<UnicodeString>
// Each row is represented by a UnicodeString, being used as a Vector<int16>.
// Row 0 is the stop state.
// Row 1 is the start state.
// Row 2 and beyond are other states, initially one per char class, but
// after initial construction, many of the states will be combined, compacting the table.
// The String holds the nextState data only. The four leading fields of a row, fAccepting,
// fLookAhead, etc. are not needed for the safe table, and are omitted at this stage of building.
U_ASSERT(fSafeTable == nullptr);
LocalPointer<UVector> lpSafeTable(
new UVector(uprv_deleteUObject, uhash_compareUnicodeString, numCharClasses + 2, status), status);
if (U_FAILURE(status)) {
return;
}
fSafeTable = lpSafeTable.orphan();
for (int32_t row=0; row<numCharClasses + 2; ++row) {
LocalPointer<UnicodeString> lpString(new UnicodeString(numCharClasses, 0, numCharClasses+4), status);
fSafeTable->adoptElement(lpString.orphan(), status);
}
if (U_FAILURE(status)) {
return;
}
// From the start state, each input char class transitions to the state for that input.
UnicodeString &startState = *static_cast<UnicodeString *>(fSafeTable->elementAt(1));
for (int32_t charClass=0; charClass < numCharClasses; ++charClass) {
// Note: +2 for the start & stop state.
startState.setCharAt(charClass, static_cast<char16_t>(charClass+2));
}
// Initially make every other state table row look like the start state row,
for (int32_t row=2; row<numCharClasses+2; ++row) {
UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(row));
rowState = startState; // UnicodeString assignment, copies contents.
}
// Run through the safe pairs, set the next state to zero when pair has been seen.
// Zero being the stop state, meaning we found a safe point.
for (int32_t pairIdx=0; pairIdx<safePairs.length(); pairIdx+=2) {
int32_t c1 = safePairs.charAt(pairIdx);
int32_t c2 = safePairs.charAt(pairIdx + 1);
UnicodeString &rowState = *static_cast<UnicodeString *>(fSafeTable->elementAt(c2 + 2));
rowState.setCharAt(c1, 0);
}
// Remove duplicate or redundant rows from the table.
IntPair states = {1, 0};
while (findDuplicateSafeState(&states)) {
// printf("Removing duplicate safe states (%d, %d)\n", states.first, states.second);
removeSafeState(states);
}
}
//-----------------------------------------------------------------------------
//
// getSafeTableSize() Calculate the size of the runtime form of this
// safe state table.
//
//-----------------------------------------------------------------------------
int32_t RBBITableBuilder::getSafeTableSize() const {
int32_t size = 0;
int32_t numRows;
int32_t numCols;
int32_t rowSize;
if (fSafeTable == nullptr) {
return 0;
}
size = offsetof(RBBIStateTable, fTableData); // The header, with no rows to the table.
numRows = fSafeTable->size();
numCols = fRB->fSetBuilder->getNumCharCategories();
if (use8BitsForSafeTable()) {
rowSize = offsetof(RBBIStateTableRow8, fNextState) + sizeof(int8_t)*numCols;
} else {
rowSize = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t)*numCols;
}
size += numRows * rowSize;
return size;
}
bool RBBITableBuilder::use8BitsForSafeTable() const {
return fSafeTable->size() <= kMaxStateFor8BitsTable;
}
//-----------------------------------------------------------------------------
//
// exportSafeTable() export the state transition table in the format required
// by the runtime engine. getTableSize() bytes of memory
// must be available at the output address "where".
//
//-----------------------------------------------------------------------------
void RBBITableBuilder::exportSafeTable(void *where) {
RBBIStateTable *table = (RBBIStateTable *)where;
uint32_t state;
int col;
if (U_FAILURE(*fStatus) || fSafeTable == nullptr) {
return;
}
int32_t catCount = fRB->fSetBuilder->getNumCharCategories();
if (catCount > 0x7fff ||
fSafeTable->size() > 0x7fff) {
*fStatus = U_BRK_INTERNAL_ERROR;
return;
}
table->fNumStates = fSafeTable->size();
table->fFlags = 0;
if (use8BitsForSafeTable()) {
table->fRowLen = offsetof(RBBIStateTableRow8, fNextState) + sizeof(uint8_t) * catCount;
table->fFlags |= RBBI_8BITS_ROWS;
} else {
table->fRowLen = offsetof(RBBIStateTableRow16, fNextState) + sizeof(int16_t) * catCount;
}
for (state=0; state<table->fNumStates; state++) {
UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(state);
RBBIStateTableRow *row = (RBBIStateTableRow *)(table->fTableData + state*table->fRowLen);
if (use8BitsForSafeTable()) {
RBBIStateTableRow8 *r8 = (RBBIStateTableRow8*)row;
r8->fAccepting = 0;
r8->fLookAhead = 0;
r8->fTagsIdx = 0;
for (col=0; col<catCount; col++) {
U_ASSERT(rowString->charAt(col) <= kMaxStateFor8BitsTable);
r8->fNextState[col] = static_cast<uint8_t>(rowString->charAt(col));
}
} else {
row->r16.fAccepting = 0;
row->r16.fLookAhead = 0;
row->r16.fTagsIdx = 0;
for (col=0; col<catCount; col++) {
row->r16.fNextState[col] = rowString->charAt(col);
}
}
}
}
//-----------------------------------------------------------------------------
//
// printSet Debug function. Print the contents of a UVector
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printSet(UVector *s) {
int32_t i;
for (i=0; i<s->size(); i++) {
const RBBINode *v = static_cast<const RBBINode *>(s->elementAt(i));
RBBIDebugPrintf("%5d", v==nullptr? -1 : v->fSerialNum);
}
RBBIDebugPrintf("\n");
}
#endif
//-----------------------------------------------------------------------------
//
// printStates Debug Function. Dump the fully constructed state transition table.
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printStates() {
int c; // input "character"
int n; // state number
RBBIDebugPrintf("state | i n p u t s y m b o l s \n");
RBBIDebugPrintf(" | Acc LA Tag");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf(" %3d", c);
}
RBBIDebugPrintf("\n");
RBBIDebugPrintf(" |---------------");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf("----");
}
RBBIDebugPrintf("\n");
for (n=0; n<fDStates->size(); n++) {
RBBIStateDescriptor *sd = (RBBIStateDescriptor *)fDStates->elementAt(n);
RBBIDebugPrintf(" %3d | " , n);
RBBIDebugPrintf("%3d %3d %5d ", sd->fAccepting, sd->fLookAhead, sd->fTagsIdx);
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf(" %3d", sd->fDtran->elementAti(c));
}
RBBIDebugPrintf("\n");
}
RBBIDebugPrintf("\n\n");
}
#endif
//-----------------------------------------------------------------------------
//
// printSafeTable Debug Function. Dump the fully constructed safe table.
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printReverseTable() {
int c; // input "character"
int n; // state number
RBBIDebugPrintf(" Safe Reverse Table \n");
if (fSafeTable == nullptr) {
RBBIDebugPrintf(" --- nullptr ---\n");
return;
}
RBBIDebugPrintf("state | i n p u t s y m b o l s \n");
RBBIDebugPrintf(" | Acc LA Tag");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf(" %2d", c);
}
RBBIDebugPrintf("\n");
RBBIDebugPrintf(" |---------------");
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf("---");
}
RBBIDebugPrintf("\n");
for (n=0; n<fSafeTable->size(); n++) {
UnicodeString *rowString = (UnicodeString *)fSafeTable->elementAt(n);
RBBIDebugPrintf(" %3d | " , n);
RBBIDebugPrintf("%3d %3d %5d ", 0, 0, 0); // Accepting, LookAhead, Tags
for (c=0; c<fRB->fSetBuilder->getNumCharCategories(); c++) {
RBBIDebugPrintf(" %2d", rowString->charAt(c));
}
RBBIDebugPrintf("\n");
}
RBBIDebugPrintf("\n\n");
}
#endif
//-----------------------------------------------------------------------------
//
// printRuleStatusTable Debug Function. Dump the common rule status table
//
//-----------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBITableBuilder::printRuleStatusTable() {
int32_t thisRecord = 0;
int32_t nextRecord = 0;
int i;
UVector *tbl = fRB->fRuleStatusVals;
RBBIDebugPrintf("index | tags \n");
RBBIDebugPrintf("-------------------\n");
while (nextRecord < tbl->size()) {
thisRecord = nextRecord;
nextRecord = thisRecord + tbl->elementAti(thisRecord) + 1;
RBBIDebugPrintf("%4d ", thisRecord);
for (i=thisRecord+1; i<nextRecord; i++) {
RBBIDebugPrintf(" %5d", tbl->elementAti(i));
}
RBBIDebugPrintf("\n");
}
RBBIDebugPrintf("\n\n");
}
#endif
//-----------------------------------------------------------------------------
//
// RBBIStateDescriptor Methods. This is a very struct-like class
// Most access is directly to the fields.
//
//-----------------------------------------------------------------------------
RBBIStateDescriptor::RBBIStateDescriptor(int lastInputSymbol, UErrorCode *fStatus) {
fMarked = false;
fAccepting = 0;
fLookAhead = 0;
fTagsIdx = 0;
fTagVals = nullptr;
fPositions = nullptr;
fDtran = nullptr;
fDtran = new UVector32(lastInputSymbol+1, *fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
if (fDtran == nullptr) {
*fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
fDtran->setSize(lastInputSymbol+1); // fDtran needs to be pre-sized.
// It is indexed by input symbols, and will
// hold the next state number for each
// symbol.
}
RBBIStateDescriptor::~RBBIStateDescriptor() {
delete fPositions;
delete fDtran;
delete fTagVals;
fPositions = nullptr;
fDtran = nullptr;
fTagVals = nullptr;
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */