171 lines
5.9 KiB
C++
171 lines
5.9 KiB
C++
|
// Copyright 2009-2021 Intel Corporation
|
||
|
// SPDX-License-Identifier: Apache-2.0
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include "../common/ray.h"
|
||
|
#include "curve_intersector_precalculations.h"
|
||
|
|
||
|
namespace embree
|
||
|
{
|
||
|
namespace isa
|
||
|
{
|
||
|
template<typename NativeCurve3fa, int M>
|
||
|
struct DistanceCurveHit
|
||
|
{
|
||
|
__forceinline DistanceCurveHit() {}
|
||
|
|
||
|
__forceinline DistanceCurveHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N,
|
||
|
const NativeCurve3fa& curve3D)
|
||
|
: U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {}
|
||
|
|
||
|
__forceinline void finalize()
|
||
|
{
|
||
|
vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N));
|
||
|
vv = V;
|
||
|
vt = T;
|
||
|
}
|
||
|
|
||
|
__forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
|
||
|
__forceinline float t (const size_t i) const { return vt[i]; }
|
||
|
__forceinline Vec3fa Ng(const size_t i) const {
|
||
|
return curve3D.eval_du(vu[i]);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
vfloat<M> U;
|
||
|
vfloat<M> V;
|
||
|
vfloat<M> T;
|
||
|
int i, N;
|
||
|
NativeCurve3fa curve3D;
|
||
|
|
||
|
public:
|
||
|
vbool<M> valid;
|
||
|
vfloat<M> vu;
|
||
|
vfloat<M> vv;
|
||
|
vfloat<M> vt;
|
||
|
};
|
||
|
|
||
|
template<typename NativeCurve3fa>
|
||
|
struct DistanceCurveHit<NativeCurve3fa,1>
|
||
|
{
|
||
|
enum { M = 1 };
|
||
|
|
||
|
__forceinline DistanceCurveHit() {}
|
||
|
|
||
|
__forceinline DistanceCurveHit(const vbool<M>& valid, const vfloat<M>& U, const vfloat<M>& V, const vfloat<M>& T, const int i, const int N,
|
||
|
const NativeCurve3fa& curve3D)
|
||
|
: U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {}
|
||
|
|
||
|
__forceinline void finalize()
|
||
|
{
|
||
|
vu = (vfloat<M>(step)+U+vfloat<M>(float(i)))*(1.0f/float(N));
|
||
|
vv = V;
|
||
|
vt = T;
|
||
|
}
|
||
|
|
||
|
__forceinline Vec2f uv () const { return Vec2f(vu,vv); }
|
||
|
__forceinline float t () const { return vt; }
|
||
|
__forceinline Vec3fa Ng() const { return curve3D.eval_du(vu); }
|
||
|
|
||
|
public:
|
||
|
vfloat<M> U;
|
||
|
vfloat<M> V;
|
||
|
vfloat<M> T;
|
||
|
int i, N;
|
||
|
NativeCurve3fa curve3D;
|
||
|
|
||
|
public:
|
||
|
vbool<M> valid;
|
||
|
vfloat<M> vu;
|
||
|
vfloat<M> vv;
|
||
|
vfloat<M> vt;
|
||
|
};
|
||
|
|
||
|
template<typename NativeCurve3fa, int W = VSIZEX>
|
||
|
struct DistanceCurve1Intersector1
|
||
|
{
|
||
|
using vboolx = vbool<W>;
|
||
|
using vintx = vint<W>;
|
||
|
using vfloatx = vfloat<W>;
|
||
|
using Vec4vfx = Vec4vf<W>;
|
||
|
|
||
|
template<typename Epilog>
|
||
|
__forceinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
|
||
|
RayQueryContext* context,
|
||
|
const CurveGeometry* geom, const unsigned int primID,
|
||
|
const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
|
||
|
const Epilog& epilog)
|
||
|
{
|
||
|
const int N = geom->tessellationRate;
|
||
|
|
||
|
/* transform control points into ray space */
|
||
|
const NativeCurve3fa curve3Di(v0,v1,v2,v3);
|
||
|
const NativeCurve3fa curve3D = enlargeRadiusToMinWidth(context,geom,ray.org,curve3Di);
|
||
|
const NativeCurve3fa curve2D = curve3D.xfm_pr(pre.ray_space,ray.org);
|
||
|
|
||
|
/* evaluate the bezier curve */
|
||
|
vboolx valid = vfloatx(step) < vfloatx(float(N));
|
||
|
const Vec4vfx p0 = curve2D.template eval0<W>(0,N);
|
||
|
const Vec4vfx p1 = curve2D.template eval1<W>(0,N);
|
||
|
|
||
|
/* approximative intersection with cone */
|
||
|
const Vec4vfx v = p1-p0;
|
||
|
const Vec4vfx w = -p0;
|
||
|
const vfloatx d0 = madd(w.x,v.x,w.y*v.y);
|
||
|
const vfloatx d1 = madd(v.x,v.x,v.y*v.y);
|
||
|
const vfloatx u = clamp(d0*rcp(d1),vfloatx(zero),vfloatx(one));
|
||
|
const Vec4vfx p = madd(u,v,p0);
|
||
|
const vfloatx t = p.z*pre.depth_scale;
|
||
|
const vfloatx d2 = madd(p.x,p.x,p.y*p.y);
|
||
|
const vfloatx r = p.w;
|
||
|
const vfloatx r2 = r*r;
|
||
|
valid &= (d2 <= r2) & (vfloatx(ray.tnear()) <= t) & (t <= vfloatx(ray.tfar));
|
||
|
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)
|
||
|
valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*pre.depth_scale; // ignore self intersections
|
||
|
|
||
|
/* update hit information */
|
||
|
bool ishit = false;
|
||
|
if (unlikely(any(valid))) {
|
||
|
DistanceCurveHit<NativeCurve3fa,W> hit(valid,u,0.0f,t,0,N,curve3D);
|
||
|
ishit = ishit | epilog(valid,hit);
|
||
|
}
|
||
|
|
||
|
if (unlikely(W < N))
|
||
|
{
|
||
|
/* process SIMD-size many segments per iteration */
|
||
|
for (int i=W; i<N; i+=W)
|
||
|
{
|
||
|
/* evaluate the bezier curve */
|
||
|
vboolx valid = vintx(i)+vintx(step) < vintx(N);
|
||
|
const Vec4vfx p0 = curve2D.template eval0<W>(i,N);
|
||
|
const Vec4vfx p1 = curve2D.template eval1<W>(i,N);
|
||
|
|
||
|
/* approximative intersection with cone */
|
||
|
const Vec4vfx v = p1-p0;
|
||
|
const Vec4vfx w = -p0;
|
||
|
const vfloatx d0 = madd(w.x,v.x,w.y*v.y);
|
||
|
const vfloatx d1 = madd(v.x,v.x,v.y*v.y);
|
||
|
const vfloatx u = clamp(d0*rcp(d1),vfloatx(zero),vfloatx(one));
|
||
|
const Vec4vfx p = madd(u,v,p0);
|
||
|
const vfloatx t = p.z*pre.depth_scale;
|
||
|
const vfloatx d2 = madd(p.x,p.x,p.y*p.y);
|
||
|
const vfloatx r = p.w;
|
||
|
const vfloatx r2 = r*r;
|
||
|
valid &= (d2 <= r2) & (vfloatx(ray.tnear()) <= t) & (t <= vfloatx(ray.tfar));
|
||
|
if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f)
|
||
|
valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*pre.depth_scale; // ignore self intersections
|
||
|
|
||
|
/* update hit information */
|
||
|
if (unlikely(any(valid))) {
|
||
|
DistanceCurveHit<NativeCurve3fa,W> hit(valid,u,0.0f,t,i,N,curve3D);
|
||
|
ishit = ishit | epilog(valid,hit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return ishit;
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
}
|