godot-module-template/engine/thirdparty/basis_universal/encoder/basisu_backend.h

410 lines
9.9 KiB
C++
Raw Normal View History

2025-01-17 15:36:38 +00:00
// basisu_backend.h
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "../transcoder/basisu.h"
#include "basisu_enc.h"
#include "../transcoder/basisu_transcoder_internal.h"
#include "basisu_frontend.h"
namespace basisu
{
struct etc1_selector_palette_entry
{
etc1_selector_palette_entry()
{
clear();
}
void clear()
{
basisu::clear_obj(*this);
}
uint8_t operator[] (uint32_t i) const { assert(i < 16); return m_selectors[i]; }
uint8_t& operator[] (uint32_t i) { assert(i < 16); return m_selectors[i]; }
void set_uint32(uint32_t v)
{
for (uint32_t byte_index = 0; byte_index < 4; byte_index++)
{
uint32_t b = (v >> (byte_index * 8)) & 0xFF;
m_selectors[byte_index * 4 + 0] = b & 3;
m_selectors[byte_index * 4 + 1] = (b >> 2) & 3;
m_selectors[byte_index * 4 + 2] = (b >> 4) & 3;
m_selectors[byte_index * 4 + 3] = (b >> 6) & 3;
}
}
uint32_t get_uint32() const
{
return get_byte(0) | (get_byte(1) << 8) | (get_byte(2) << 16) | (get_byte(3) << 24);
}
uint32_t get_byte(uint32_t byte_index) const
{
assert(byte_index < 4);
return m_selectors[byte_index * 4 + 0] |
(m_selectors[byte_index * 4 + 1] << 2) |
(m_selectors[byte_index * 4 + 2] << 4) |
(m_selectors[byte_index * 4 + 3] << 6);
}
uint8_t operator()(uint32_t x, uint32_t y) const { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; }
uint8_t& operator()(uint32_t x, uint32_t y) { assert((x < 4) && (y < 4)); return m_selectors[x + y * 4]; }
bool operator< (const etc1_selector_palette_entry& other) const
{
for (uint32_t i = 0; i < 16; i++)
{
if (m_selectors[i] < other.m_selectors[i])
return true;
else if (m_selectors[i] != other.m_selectors[i])
return false;
}
return false;
}
bool operator== (const etc1_selector_palette_entry& other) const
{
for (uint32_t i = 0; i < 16; i++)
{
if (m_selectors[i] != other.m_selectors[i])
return false;
}
return true;
}
private:
uint8_t m_selectors[16];
};
typedef basisu::vector<etc1_selector_palette_entry> etc1_selector_palette_entry_vec;
struct encoder_block
{
encoder_block()
{
clear();
}
uint32_t m_endpoint_predictor;
int m_endpoint_index;
int m_selector_index;
int m_selector_history_buf_index;
bool m_is_cr_target;
void clear()
{
m_endpoint_predictor = 0;
m_endpoint_index = 0;
m_selector_index = 0;
m_selector_history_buf_index = 0;
m_is_cr_target = false;
}
};
typedef basisu::vector<encoder_block> encoder_block_vec;
typedef vector2D<encoder_block> encoder_block_vec2D;
struct etc1_endpoint_palette_entry
{
etc1_endpoint_palette_entry()
{
clear();
}
color_rgba m_color5;
uint32_t m_inten5;
bool m_color5_valid;
void clear()
{
clear_obj(*this);
}
};
typedef basisu::vector<etc1_endpoint_palette_entry> etc1_endpoint_palette_entry_vec;
struct basisu_backend_params
{
bool m_etc1s;
bool m_debug, m_debug_images;
float m_endpoint_rdo_quality_thresh;
float m_selector_rdo_quality_thresh;
uint32_t m_compression_level;
bool m_used_global_codebooks;
bool m_validate;
basisu_backend_params()
{
clear();
}
void clear()
{
m_etc1s = false;
m_debug = false;
m_debug_images = false;
m_endpoint_rdo_quality_thresh = 0.0f;
m_selector_rdo_quality_thresh = 0.0f;
m_compression_level = 0;
m_used_global_codebooks = false;
m_validate = true;
}
};
struct basisu_backend_slice_desc
{
basisu_backend_slice_desc()
{
clear();
}
void clear()
{
clear_obj(*this);
}
uint32_t m_first_block_index;
uint32_t m_orig_width;
uint32_t m_orig_height;
uint32_t m_width;
uint32_t m_height;
uint32_t m_num_blocks_x;
uint32_t m_num_blocks_y;
uint32_t m_num_macroblocks_x;
uint32_t m_num_macroblocks_y;
uint32_t m_source_file_index; // also the basis image index
uint32_t m_mip_index;
bool m_alpha;
bool m_iframe;
};
typedef basisu::vector<basisu_backend_slice_desc> basisu_backend_slice_desc_vec;
struct basisu_backend_output
{
basist::basis_tex_format m_tex_format;
bool m_etc1s;
bool m_uses_global_codebooks;
bool m_srgb;
uint32_t m_num_endpoints;
uint32_t m_num_selectors;
uint8_vec m_endpoint_palette;
uint8_vec m_selector_palette;
basisu_backend_slice_desc_vec m_slice_desc;
uint8_vec m_slice_image_tables;
basisu::vector<uint8_vec> m_slice_image_data;
uint16_vec m_slice_image_crcs;
basisu_backend_output()
{
clear();
}
void clear()
{
m_tex_format = basist::basis_tex_format::cETC1S;
m_etc1s = false;
m_uses_global_codebooks = false;
m_srgb = true;
m_num_endpoints = 0;
m_num_selectors = 0;
m_endpoint_palette.clear();
m_selector_palette.clear();
m_slice_desc.clear();
m_slice_image_tables.clear();
m_slice_image_data.clear();
m_slice_image_crcs.clear();
}
uint32_t get_output_size_estimate() const
{
uint32_t total_compressed_bytes = (uint32_t)(m_slice_image_tables.size() + m_endpoint_palette.size() + m_selector_palette.size());
for (uint32_t i = 0; i < m_slice_image_data.size(); i++)
total_compressed_bytes += (uint32_t)m_slice_image_data[i].size();
return total_compressed_bytes;
}
};
class basisu_backend
{
BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(basisu_backend);
public:
basisu_backend();
void clear();
void init(basisu_frontend *pFront_end, basisu_backend_params &params, const basisu_backend_slice_desc_vec &slice_desc);
uint32_t encode();
const basisu_backend_output &get_output() const { return m_output; }
const basisu_backend_params& get_params() const { return m_params; }
private:
basisu_frontend *m_pFront_end;
basisu_backend_params m_params;
basisu_backend_slice_desc_vec m_slices;
basisu_backend_output m_output;
etc1_endpoint_palette_entry_vec m_endpoint_palette;
etc1_selector_palette_entry_vec m_selector_palette;
struct etc1_global_selector_cb_entry_desc
{
uint32_t m_pal_index;
uint32_t m_mod_index;
bool m_was_used;
};
typedef basisu::vector<etc1_global_selector_cb_entry_desc> etc1_global_selector_cb_entry_desc_vec;
etc1_global_selector_cb_entry_desc_vec m_global_selector_palette_desc;
basisu::vector<encoder_block_vec2D> m_slice_encoder_blocks;
// Maps OLD to NEW endpoint/selector indices
uint_vec m_endpoint_remap_table_old_to_new;
uint_vec m_endpoint_remap_table_new_to_old;
bool_vec m_old_endpoint_was_used;
bool_vec m_new_endpoint_was_used;
uint_vec m_selector_remap_table_old_to_new;
// Maps NEW to OLD endpoint/selector indices
uint_vec m_selector_remap_table_new_to_old;
uint32_t get_total_slices() const
{
return (uint32_t)m_slices.size();
}
uint32_t get_total_slice_blocks() const
{
return m_pFront_end->get_total_output_blocks();
}
uint32_t get_block_index(uint32_t slice_index, uint32_t block_x, uint32_t block_y) const
{
const basisu_backend_slice_desc &slice = m_slices[slice_index];
assert((block_x < slice.m_num_blocks_x) && (block_y < slice.m_num_blocks_y));
return slice.m_first_block_index + block_y * slice.m_num_blocks_x + block_x;
}
uint32_t get_total_blocks(uint32_t slice_index) const
{
return m_slices[slice_index].m_num_blocks_x * m_slices[slice_index].m_num_blocks_y;
}
uint32_t get_total_blocks() const
{
uint32_t total_blocks = 0;
for (uint32_t i = 0; i < m_slices.size(); i++)
total_blocks += get_total_blocks(i);
return total_blocks;
}
// Returns the total number of input texels, not counting padding up to blocks/macroblocks.
uint32_t get_total_input_texels(uint32_t slice_index) const
{
return m_slices[slice_index].m_orig_width * m_slices[slice_index].m_orig_height;
}
uint32_t get_total_input_texels() const
{
uint32_t total_texels = 0;
for (uint32_t i = 0; i < m_slices.size(); i++)
total_texels += get_total_input_texels(i);
return total_texels;
}
int find_slice(uint32_t block_index, uint32_t *pBlock_x, uint32_t *pBlock_y) const
{
for (uint32_t i = 0; i < m_slices.size(); i++)
{
if ((block_index >= m_slices[i].m_first_block_index) && (block_index < (m_slices[i].m_first_block_index + m_slices[i].m_num_blocks_x * m_slices[i].m_num_blocks_y)))
{
const uint32_t ofs = block_index - m_slices[i].m_first_block_index;
const uint32_t x = ofs % m_slices[i].m_num_blocks_x;
const uint32_t y = ofs / m_slices[i].m_num_blocks_x;
if (pBlock_x) *pBlock_x = x;
if (pBlock_y) *pBlock_y = y;
return i;
}
}
return -1;
}
void create_endpoint_palette();
void create_selector_palette();
// endpoint palette
// 5:5:5 and predicted 4:4:4 colors, 1 or 2 3-bit intensity table indices
// selector palette
// 4x4 2-bit selectors
// per-macroblock:
// 4 diff bits
// 4 flip bits
// Endpoint template index, 1-8 endpoint indices
// Alternately, if no template applies, we can send 4 ETC1S bits followed by 4-8 endpoint indices
// 4 selector indices
void reoptimize_and_sort_endpoints_codebook(uint32_t total_block_endpoints_remapped, uint_vec &all_endpoint_indices);
void sort_selector_codebook();
void create_encoder_blocks();
void compute_slice_crcs();
bool encode_image();
bool encode_endpoint_palette();
bool encode_selector_palette();
int find_video_frame(int slice_index, int delta);
void check_for_valid_cr_blocks();
};
} // namespace basisu