741 lines
23 KiB
C++
741 lines
23 KiB
C++
|
/*
|
||
|
|
||
|
Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
|
||
|
SPDX-License-Identifier: MIT
|
||
|
|
||
|
QOA - The "Quite OK Audio" format for fast, lossy audio compression
|
||
|
|
||
|
|
||
|
-- Data Format
|
||
|
|
||
|
QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,
|
||
|
sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
|
||
|
|
||
|
The compression method employed in QOA is lossy; it discards some information
|
||
|
from the uncompressed PCM data. For many types of audio signals this compression
|
||
|
is "transparent", i.e. the difference from the original file is often not
|
||
|
audible.
|
||
|
|
||
|
QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
|
||
|
sample therefore requires 3.2 bits of storage space, resulting in a 5x
|
||
|
compression (16 / 3.2).
|
||
|
|
||
|
A QOA file consists of an 8 byte file header, followed by a number of frames.
|
||
|
Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
|
||
|
state per channel and 256 slices per channel. Each slice is 8 bytes wide and
|
||
|
encodes 20 samples of audio data.
|
||
|
|
||
|
All values, including the slices, are big endian. The file layout is as follows:
|
||
|
|
||
|
struct {
|
||
|
struct {
|
||
|
char magic[4]; // magic bytes "qoaf"
|
||
|
uint32_t samples; // samples per channel in this file
|
||
|
} file_header;
|
||
|
|
||
|
struct {
|
||
|
struct {
|
||
|
uint8_t num_channels; // no. of channels
|
||
|
uint24_t samplerate; // samplerate in hz
|
||
|
uint16_t fsamples; // samples per channel in this frame
|
||
|
uint16_t fsize; // frame size (includes this header)
|
||
|
} frame_header;
|
||
|
|
||
|
struct {
|
||
|
int16_t history[4]; // most recent last
|
||
|
int16_t weights[4]; // most recent last
|
||
|
} lms_state[num_channels];
|
||
|
|
||
|
qoa_slice_t slices[256][num_channels];
|
||
|
|
||
|
} frames[ceil(samples / (256 * 20))];
|
||
|
} qoa_file_t;
|
||
|
|
||
|
Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
|
||
|
residuals `qrNN`:
|
||
|
|
||
|
.- QOA_SLICE -- 64 bits, 20 samples --------------------------/ /------------.
|
||
|
| Byte[0] | Byte[1] | Byte[2] \ \ Byte[7] |
|
||
|
| 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 / / 2 1 0 |
|
||
|
|------------+--------+--------+--------+---------+---------+-\ \--+---------|
|
||
|
| sf_quant | qr00 | qr01 | qr02 | qr03 | qr04 | / / | qr19 |
|
||
|
`-------------------------------------------------------------\ \------------`
|
||
|
|
||
|
Each frame except the last must contain exactly 256 slices per channel. The last
|
||
|
frame may contain between 1 .. 256 (inclusive) slices per channel. The last
|
||
|
slice (for each channel) in the last frame may contain less than 20 samples; the
|
||
|
slice still must be 8 bytes wide, with the unused samples zeroed out.
|
||
|
|
||
|
Channels are interleaved per slice. E.g. for 2 channel stereo:
|
||
|
slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
|
||
|
|
||
|
A valid QOA file or stream must have at least one frame. Each frame must contain
|
||
|
at least one channel and one sample with a samplerate between 1 .. 16777215
|
||
|
(inclusive).
|
||
|
|
||
|
If the total number of samples is not known by the encoder, the samples in the
|
||
|
file header may be set to 0x00000000 to indicate that the encoder is
|
||
|
"streaming". In a streaming context, the samplerate and number of channels may
|
||
|
differ from frame to frame. For static files (those with samples set to a
|
||
|
non-zero value), each frame must have the same number of channels and same
|
||
|
samplerate.
|
||
|
|
||
|
Note that this implementation of QOA only handles files with a known total
|
||
|
number of samples.
|
||
|
|
||
|
A decoder should support at least 8 channels. The channel layout for channel
|
||
|
counts 1 .. 8 is:
|
||
|
|
||
|
1. Mono
|
||
|
2. L, R
|
||
|
3. L, R, C
|
||
|
4. FL, FR, B/SL, B/SR
|
||
|
5. FL, FR, C, B/SL, B/SR
|
||
|
6. FL, FR, C, LFE, B/SL, B/SR
|
||
|
7. FL, FR, C, LFE, B, SL, SR
|
||
|
8. FL, FR, C, LFE, BL, BR, SL, SR
|
||
|
|
||
|
QOA predicts each audio sample based on the previously decoded ones using a
|
||
|
"Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the
|
||
|
dequantized residual forms the final output sample.
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
Header - Public functions */
|
||
|
|
||
|
#ifndef QOA_H
|
||
|
#define QOA_H
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
#define QOA_MIN_FILESIZE 16
|
||
|
#define QOA_MAX_CHANNELS 8
|
||
|
|
||
|
#define QOA_SLICE_LEN 20
|
||
|
#define QOA_SLICES_PER_FRAME 256
|
||
|
#define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
|
||
|
#define QOA_LMS_LEN 4
|
||
|
#define QOA_MAGIC 0x716f6166 /* 'qoaf' */
|
||
|
|
||
|
#define QOA_FRAME_SIZE(channels, slices) \
|
||
|
(8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels)
|
||
|
|
||
|
typedef struct {
|
||
|
int history[QOA_LMS_LEN];
|
||
|
int weights[QOA_LMS_LEN];
|
||
|
} qoa_lms_t;
|
||
|
|
||
|
typedef struct {
|
||
|
unsigned int channels;
|
||
|
unsigned int samplerate;
|
||
|
unsigned int samples;
|
||
|
qoa_lms_t lms[QOA_MAX_CHANNELS];
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
double error;
|
||
|
#endif
|
||
|
} qoa_desc;
|
||
|
|
||
|
inline unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
|
||
|
inline unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
|
||
|
inline void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
|
||
|
|
||
|
inline unsigned int qoa_max_frame_size(qoa_desc *qoa);
|
||
|
inline unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
|
||
|
inline unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
|
||
|
inline short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
|
||
|
|
||
|
#ifndef QOA_NO_STDIO
|
||
|
|
||
|
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa);
|
||
|
void *qoa_read(const char *filename, qoa_desc *qoa);
|
||
|
|
||
|
#endif /* QOA_NO_STDIO */
|
||
|
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
#endif /* QOA_H */
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
Implementation */
|
||
|
|
||
|
#ifdef QOA_IMPLEMENTATION
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
#ifndef QOA_MALLOC
|
||
|
#define QOA_MALLOC(sz) malloc(sz)
|
||
|
#define QOA_FREE(p) free(p)
|
||
|
#endif
|
||
|
|
||
|
typedef unsigned long long qoa_uint64_t;
|
||
|
|
||
|
|
||
|
/* The quant_tab provides an index into the dequant_tab for residuals in the
|
||
|
range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at
|
||
|
the higher end. Note that the residual zero is identical to the lowest positive
|
||
|
value. This is mostly fine, since the qoa_div() function always rounds away
|
||
|
from zero. */
|
||
|
|
||
|
static const int qoa_quant_tab[17] = {
|
||
|
7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
|
||
|
0, /* 0 */
|
||
|
0, 2, 2, 4, 4, 6, 6, 6 /* 1.. 8 */
|
||
|
};
|
||
|
|
||
|
|
||
|
/* We have 16 different scalefactors. Like the quantized residuals these become
|
||
|
less accurate at the higher end. In theory, the highest scalefactor that we
|
||
|
would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
|
||
|
rely on the LMS filter to predict samples accurately enough that a maximum
|
||
|
residual of one quarter of the 16 bit range is sufficient. I.e. with the
|
||
|
scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
|
||
|
|
||
|
The scalefactor values are computed as:
|
||
|
scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
|
||
|
|
||
|
static const int qoa_scalefactor_tab[16] = {
|
||
|
1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
|
||
|
};
|
||
|
|
||
|
|
||
|
/* The reciprocal_tab maps each of the 16 scalefactors to their rounded
|
||
|
reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in
|
||
|
the encoder with just one multiplication instead of an expensive division. We
|
||
|
do this in .16 fixed point with integers, instead of floats.
|
||
|
|
||
|
The reciprocal_tab is computed as:
|
||
|
reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
|
||
|
|
||
|
static const int qoa_reciprocal_tab[16] = {
|
||
|
65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
|
||
|
};
|
||
|
|
||
|
|
||
|
/* The dequant_tab maps each of the scalefactors and quantized residuals to
|
||
|
their unscaled & dequantized version.
|
||
|
|
||
|
Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
|
||
|
instead of 1. The dequant_tab assumes the following dequantized values for each
|
||
|
of the quant_tab indices and is computed as:
|
||
|
float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
|
||
|
dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
|
||
|
|
||
|
The rounding employed here is "to nearest, ties away from zero", i.e. positive
|
||
|
and negative values are treated symmetrically.
|
||
|
*/
|
||
|
|
||
|
static const int qoa_dequant_tab[16][8] = {
|
||
|
{ 1, -1, 3, -3, 5, -5, 7, -7},
|
||
|
{ 5, -5, 18, -18, 32, -32, 49, -49},
|
||
|
{ 16, -16, 53, -53, 95, -95, 147, -147},
|
||
|
{ 34, -34, 113, -113, 203, -203, 315, -315},
|
||
|
{ 63, -63, 210, -210, 378, -378, 588, -588},
|
||
|
{ 104, -104, 345, -345, 621, -621, 966, -966},
|
||
|
{ 158, -158, 528, -528, 950, -950, 1477, -1477},
|
||
|
{ 228, -228, 760, -760, 1368, -1368, 2128, -2128},
|
||
|
{ 316, -316, 1053, -1053, 1895, -1895, 2947, -2947},
|
||
|
{ 422, -422, 1405, -1405, 2529, -2529, 3934, -3934},
|
||
|
{ 548, -548, 1828, -1828, 3290, -3290, 5117, -5117},
|
||
|
{ 696, -696, 2320, -2320, 4176, -4176, 6496, -6496},
|
||
|
{ 868, -868, 2893, -2893, 5207, -5207, 8099, -8099},
|
||
|
{1064, -1064, 3548, -3548, 6386, -6386, 9933, -9933},
|
||
|
{1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005},
|
||
|
{1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336},
|
||
|
};
|
||
|
|
||
|
|
||
|
/* The Least Mean Squares Filter is the heart of QOA. It predicts the next
|
||
|
sample based on the previous 4 reconstructed samples. It does so by continuously
|
||
|
adjusting 4 weights based on the residual of the previous prediction.
|
||
|
|
||
|
The next sample is predicted as the sum of (weight[i] * history[i]).
|
||
|
|
||
|
The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or
|
||
|
subtracts the residual to each weight, based on the corresponding sample from
|
||
|
the history. This, surprisingly, is sufficient to get worthwhile predictions.
|
||
|
|
||
|
This is all done with fixed point integers. Hence the right-shifts when updating
|
||
|
the weights and calculating the prediction. */
|
||
|
|
||
|
static int qoa_lms_predict(qoa_lms_t *lms) {
|
||
|
int prediction = 0;
|
||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||
|
prediction += lms->weights[i] * lms->history[i];
|
||
|
}
|
||
|
return prediction >> 13;
|
||
|
}
|
||
|
|
||
|
static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) {
|
||
|
int delta = residual >> 4;
|
||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||
|
lms->weights[i] += lms->history[i] < 0 ? -delta : delta;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < QOA_LMS_LEN-1; i++) {
|
||
|
lms->history[i] = lms->history[i+1];
|
||
|
}
|
||
|
lms->history[QOA_LMS_LEN-1] = sample;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* qoa_div() implements a rounding division, but avoids rounding to zero for
|
||
|
small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still
|
||
|
returns as 0, which is handled in the qoa_quant_tab[].
|
||
|
qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an
|
||
|
argument, so it can do the division with a cheaper integer multiplication. */
|
||
|
|
||
|
static inline int qoa_div(int v, int scalefactor) {
|
||
|
int reciprocal = qoa_reciprocal_tab[scalefactor];
|
||
|
int n = (v * reciprocal + (1 << 15)) >> 16;
|
||
|
n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
static inline int qoa_clamp(int v, int min, int max) {
|
||
|
if (v < min) { return min; }
|
||
|
if (v > max) { return max; }
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
/* This specialized clamp function for the signed 16 bit range improves decode
|
||
|
performance quite a bit. The extra if() statement works nicely with the CPUs
|
||
|
branch prediction as this branch is rarely taken. */
|
||
|
|
||
|
static inline int qoa_clamp_s16(int v) {
|
||
|
if ((unsigned int)(v + 32768) > 65535) {
|
||
|
if (v < -32768) { return -32768; }
|
||
|
if (v > 32767) { return 32767; }
|
||
|
}
|
||
|
return v;
|
||
|
}
|
||
|
|
||
|
static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
|
||
|
bytes += *p;
|
||
|
*p += 8;
|
||
|
return
|
||
|
((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) |
|
||
|
((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) |
|
||
|
((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) |
|
||
|
((qoa_uint64_t)(bytes[6]) << 8) | ((qoa_uint64_t)(bytes[7]) << 0);
|
||
|
}
|
||
|
|
||
|
static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) {
|
||
|
bytes += *p;
|
||
|
*p += 8;
|
||
|
bytes[0] = (v >> 56) & 0xff;
|
||
|
bytes[1] = (v >> 48) & 0xff;
|
||
|
bytes[2] = (v >> 40) & 0xff;
|
||
|
bytes[3] = (v >> 32) & 0xff;
|
||
|
bytes[4] = (v >> 24) & 0xff;
|
||
|
bytes[5] = (v >> 16) & 0xff;
|
||
|
bytes[6] = (v >> 8) & 0xff;
|
||
|
bytes[7] = (v >> 0) & 0xff;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
Encoder */
|
||
|
|
||
|
unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) {
|
||
|
unsigned int p = 0;
|
||
|
qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) {
|
||
|
unsigned int channels = qoa->channels;
|
||
|
|
||
|
unsigned int p = 0;
|
||
|
unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
|
||
|
unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
|
||
|
int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
|
||
|
|
||
|
/* Write the frame header */
|
||
|
qoa_write_u64((
|
||
|
(qoa_uint64_t)qoa->channels << 56 |
|
||
|
(qoa_uint64_t)qoa->samplerate << 32 |
|
||
|
(qoa_uint64_t)frame_len << 16 |
|
||
|
(qoa_uint64_t)frame_size
|
||
|
), bytes, &p);
|
||
|
|
||
|
|
||
|
for (unsigned int c = 0; c < channels; c++) {
|
||
|
/* Write the current LMS state */
|
||
|
qoa_uint64_t weights = 0;
|
||
|
qoa_uint64_t history = 0;
|
||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||
|
history = (history << 16) | (qoa->lms[c].history[i] & 0xffff);
|
||
|
weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff);
|
||
|
}
|
||
|
qoa_write_u64(history, bytes, &p);
|
||
|
qoa_write_u64(weights, bytes, &p);
|
||
|
}
|
||
|
|
||
|
/* We encode all samples with the channels interleaved on a slice level.
|
||
|
E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
|
||
|
for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
|
||
|
|
||
|
for (unsigned int c = 0; c < channels; c++) {
|
||
|
int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
|
||
|
int slice_start = sample_index * channels + c;
|
||
|
int slice_end = (sample_index + slice_len) * channels + c;
|
||
|
|
||
|
/* Brute for search for the best scalefactor. Just go through all
|
||
|
16 scalefactors, encode all samples for the current slice and
|
||
|
meassure the total squared error. */
|
||
|
qoa_uint64_t best_rank = -1;
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
qoa_uint64_t best_error = -1;
|
||
|
#endif
|
||
|
qoa_uint64_t best_slice = -1;
|
||
|
qoa_lms_t best_lms = {{-1, -1, -1, -1}, {-1, -1, -1, -1}};
|
||
|
int best_scalefactor = -1;
|
||
|
|
||
|
for (int sfi = 0; sfi < 16; sfi++) {
|
||
|
/* There is a strong correlation between the scalefactors of
|
||
|
neighboring slices. As an optimization, start testing
|
||
|
the best scalefactor of the previous slice first. */
|
||
|
int scalefactor = (sfi + prev_scalefactor[c]) % 16;
|
||
|
|
||
|
/* We have to reset the LMS state to the last known good one
|
||
|
before trying each scalefactor, as each pass updates the LMS
|
||
|
state when encoding. */
|
||
|
qoa_lms_t lms = qoa->lms[c];
|
||
|
qoa_uint64_t slice = scalefactor;
|
||
|
qoa_uint64_t current_rank = 0;
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
qoa_uint64_t current_error = 0;
|
||
|
#endif
|
||
|
|
||
|
for (int si = slice_start; si < slice_end; si += channels) {
|
||
|
int sample = sample_data[si];
|
||
|
int predicted = qoa_lms_predict(&lms);
|
||
|
|
||
|
int residual = sample - predicted;
|
||
|
int scaled = qoa_div(residual, scalefactor);
|
||
|
int clamped = qoa_clamp(scaled, -8, 8);
|
||
|
int quantized = qoa_quant_tab[clamped + 8];
|
||
|
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||
|
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||
|
|
||
|
|
||
|
/* If the weights have grown too large, we introduce a penalty
|
||
|
here. This prevents pops/clicks in certain problem cases */
|
||
|
int weights_penalty = ((
|
||
|
lms.weights[0] * lms.weights[0] +
|
||
|
lms.weights[1] * lms.weights[1] +
|
||
|
lms.weights[2] * lms.weights[2] +
|
||
|
lms.weights[3] * lms.weights[3]
|
||
|
) >> 18) - 0x8ff;
|
||
|
if (weights_penalty < 0) {
|
||
|
weights_penalty = 0;
|
||
|
}
|
||
|
|
||
|
long long error = (sample - reconstructed);
|
||
|
qoa_uint64_t error_sq = error * error;
|
||
|
|
||
|
current_rank += error_sq + weights_penalty * weights_penalty;
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
current_error += error_sq;
|
||
|
#endif
|
||
|
if (current_rank > best_rank) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
qoa_lms_update(&lms, reconstructed, dequantized);
|
||
|
slice = (slice << 3) | quantized;
|
||
|
}
|
||
|
|
||
|
if (current_rank < best_rank) {
|
||
|
best_rank = current_rank;
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
best_error = current_error;
|
||
|
#endif
|
||
|
best_slice = slice;
|
||
|
best_lms = lms;
|
||
|
best_scalefactor = scalefactor;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
prev_scalefactor[c] = best_scalefactor;
|
||
|
|
||
|
qoa->lms[c] = best_lms;
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
qoa->error += best_error;
|
||
|
#endif
|
||
|
|
||
|
/* If this slice was shorter than QOA_SLICE_LEN, we have to left-
|
||
|
shift all encoded data, to ensure the rightmost bits are the empty
|
||
|
ones. This should only happen in the last frame of a file as all
|
||
|
slices are completely filled otherwise. */
|
||
|
best_slice <<= (QOA_SLICE_LEN - slice_len) * 3;
|
||
|
qoa_write_u64(best_slice, bytes, &p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) {
|
||
|
if (
|
||
|
qoa->samples == 0 ||
|
||
|
qoa->samplerate == 0 || qoa->samplerate > 0xffffff ||
|
||
|
qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS
|
||
|
) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Calculate the encoded size and allocate */
|
||
|
unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN;
|
||
|
unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN;
|
||
|
unsigned int encoded_size = 8 + /* 8 byte file header */
|
||
|
num_frames * 8 + /* 8 byte frame headers */
|
||
|
num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
|
||
|
num_slices * 8 * qoa->channels; /* 8 byte slices */
|
||
|
|
||
|
unsigned char *bytes = (unsigned char *)QOA_MALLOC(encoded_size);
|
||
|
|
||
|
for (unsigned int c = 0; c < qoa->channels; c++) {
|
||
|
/* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the
|
||
|
prediction of the first few ms of a file. */
|
||
|
qoa->lms[c].weights[0] = 0;
|
||
|
qoa->lms[c].weights[1] = 0;
|
||
|
qoa->lms[c].weights[2] = -(1<<13);
|
||
|
qoa->lms[c].weights[3] = (1<<14);
|
||
|
|
||
|
/* Explicitly set the history samples to 0, as we might have some
|
||
|
garbage in there. */
|
||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||
|
qoa->lms[c].history[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Encode the header and go through all frames */
|
||
|
unsigned int p = qoa_encode_header(qoa, bytes);
|
||
|
#ifdef QOA_RECORD_TOTAL_ERROR
|
||
|
qoa->error = 0;
|
||
|
#endif
|
||
|
|
||
|
int frame_len = QOA_FRAME_LEN;
|
||
|
for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
|
||
|
frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);
|
||
|
const short *frame_samples = sample_data + sample_index * qoa->channels;
|
||
|
unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
|
||
|
p += frame_size;
|
||
|
}
|
||
|
|
||
|
*out_len = p;
|
||
|
return bytes;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
Decoder */
|
||
|
|
||
|
unsigned int qoa_max_frame_size(qoa_desc *qoa) {
|
||
|
return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME);
|
||
|
}
|
||
|
|
||
|
unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||
|
unsigned int p = 0;
|
||
|
if (size < QOA_MIN_FILESIZE) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Read the file header, verify the magic number ('qoaf') and read the
|
||
|
total number of samples. */
|
||
|
qoa_uint64_t file_header = qoa_read_u64(bytes, &p);
|
||
|
|
||
|
if ((file_header >> 32) != QOA_MAGIC) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
qoa->samples = file_header & 0xffffffff;
|
||
|
if (!qoa->samples) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Peek into the first frame header to get the number of channels and
|
||
|
the samplerate. */
|
||
|
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||
|
qoa->channels = (frame_header >> 56) & 0x0000ff;
|
||
|
qoa->samplerate = (frame_header >> 32) & 0xffffff;
|
||
|
|
||
|
if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 8;
|
||
|
}
|
||
|
|
||
|
unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) {
|
||
|
unsigned int p = 0;
|
||
|
*frame_len = 0;
|
||
|
|
||
|
if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Read and verify the frame header */
|
||
|
qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
|
||
|
unsigned int channels = (frame_header >> 56) & 0x0000ff;
|
||
|
unsigned int samplerate = (frame_header >> 32) & 0xffffff;
|
||
|
unsigned int samples = (frame_header >> 16) & 0x00ffff;
|
||
|
unsigned int frame_size = (frame_header ) & 0x00ffff;
|
||
|
|
||
|
unsigned int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
|
||
|
unsigned int num_slices = data_size / 8;
|
||
|
unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
|
||
|
|
||
|
if (
|
||
|
channels != qoa->channels ||
|
||
|
samplerate != qoa->samplerate ||
|
||
|
frame_size > size ||
|
||
|
samples * channels > max_total_samples
|
||
|
) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
|
||
|
for (unsigned int c = 0; c < channels; c++) {
|
||
|
qoa_uint64_t history = qoa_read_u64(bytes, &p);
|
||
|
qoa_uint64_t weights = qoa_read_u64(bytes, &p);
|
||
|
for (int i = 0; i < QOA_LMS_LEN; i++) {
|
||
|
qoa->lms[c].history[i] = ((signed short)(history >> 48));
|
||
|
history <<= 16;
|
||
|
qoa->lms[c].weights[i] = ((signed short)(weights >> 48));
|
||
|
weights <<= 16;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Decode all slices for all channels in this frame */
|
||
|
for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
|
||
|
for (unsigned int c = 0; c < channels; c++) {
|
||
|
qoa_uint64_t slice = qoa_read_u64(bytes, &p);
|
||
|
|
||
|
int scalefactor = (slice >> 60) & 0xf;
|
||
|
int slice_start = sample_index * channels + c;
|
||
|
int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c;
|
||
|
|
||
|
for (int si = slice_start; si < slice_end; si += channels) {
|
||
|
int predicted = qoa_lms_predict(&qoa->lms[c]);
|
||
|
int quantized = (slice >> 57) & 0x7;
|
||
|
int dequantized = qoa_dequant_tab[scalefactor][quantized];
|
||
|
int reconstructed = qoa_clamp_s16(predicted + dequantized);
|
||
|
|
||
|
sample_data[si] = reconstructed;
|
||
|
slice <<= 3;
|
||
|
|
||
|
qoa_lms_update(&qoa->lms[c], reconstructed, dequantized);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*frame_len = samples;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
|
||
|
unsigned int p = qoa_decode_header(bytes, size, qoa);
|
||
|
if (!p) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* Calculate the required size of the sample buffer and allocate */
|
||
|
int total_samples = qoa->samples * qoa->channels;
|
||
|
short *sample_data = (short *)QOA_MALLOC(total_samples * sizeof(short));
|
||
|
|
||
|
unsigned int sample_index = 0;
|
||
|
unsigned int frame_len;
|
||
|
unsigned int frame_size;
|
||
|
|
||
|
/* Decode all frames */
|
||
|
do {
|
||
|
short *sample_ptr = sample_data + sample_index * qoa->channels;
|
||
|
frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len);
|
||
|
|
||
|
p += frame_size;
|
||
|
sample_index += frame_len;
|
||
|
} while (frame_size && sample_index < qoa->samples);
|
||
|
|
||
|
qoa->samples = sample_index;
|
||
|
return sample_data;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
File read/write convenience functions */
|
||
|
|
||
|
#ifndef QOA_NO_STDIO
|
||
|
#include <stdio.h>
|
||
|
|
||
|
int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) {
|
||
|
FILE *f = fopen(filename, "wb");
|
||
|
unsigned int size;
|
||
|
void *encoded;
|
||
|
|
||
|
if (!f) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
encoded = qoa_encode(sample_data, qoa, &size);
|
||
|
if (!encoded) {
|
||
|
fclose(f);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
fwrite(encoded, 1, size, f);
|
||
|
fclose(f);
|
||
|
|
||
|
QOA_FREE(encoded);
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
void *qoa_read(const char *filename, qoa_desc *qoa) {
|
||
|
FILE *f = fopen(filename, "rb");
|
||
|
int size, bytes_read;
|
||
|
void *data;
|
||
|
short *sample_data;
|
||
|
|
||
|
if (!f) {
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
fseek(f, 0, SEEK_END);
|
||
|
size = ftell(f);
|
||
|
if (size <= 0) {
|
||
|
fclose(f);
|
||
|
return NULL;
|
||
|
}
|
||
|
fseek(f, 0, SEEK_SET);
|
||
|
|
||
|
data = QOA_MALLOC(size);
|
||
|
if (!data) {
|
||
|
fclose(f);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
bytes_read = fread(data, 1, size, f);
|
||
|
fclose(f);
|
||
|
|
||
|
sample_data = qoa_decode(data, bytes_read, qoa);
|
||
|
QOA_FREE(data);
|
||
|
return sample_data;
|
||
|
}
|
||
|
|
||
|
#endif /* QOA_NO_STDIO */
|
||
|
#endif /* QOA_IMPLEMENTATION */
|