558 lines
19 KiB
C++
558 lines
19 KiB
C++
|
/**************************************************************************/
|
||
|
/* graph_edit_arranger.cpp */
|
||
|
/**************************************************************************/
|
||
|
/* This file is part of: */
|
||
|
/* GODOT ENGINE */
|
||
|
/* https://godotengine.org */
|
||
|
/**************************************************************************/
|
||
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
||
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
||
|
/* */
|
||
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||
|
/* a copy of this software and associated documentation files (the */
|
||
|
/* "Software"), to deal in the Software without restriction, including */
|
||
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
||
|
/* the following conditions: */
|
||
|
/* */
|
||
|
/* The above copyright notice and this permission notice shall be */
|
||
|
/* included in all copies or substantial portions of the Software. */
|
||
|
/* */
|
||
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
||
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||
|
/**************************************************************************/
|
||
|
|
||
|
#include "graph_edit_arranger.h"
|
||
|
|
||
|
#include "scene/gui/graph_edit.h"
|
||
|
|
||
|
void GraphEditArranger::arrange_nodes() {
|
||
|
ERR_FAIL_NULL(graph_edit);
|
||
|
|
||
|
if (!arranging_graph) {
|
||
|
arranging_graph = true;
|
||
|
} else {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Dictionary node_names;
|
||
|
HashSet<StringName> selected_nodes;
|
||
|
|
||
|
bool arrange_entire_graph = true;
|
||
|
for (int i = graph_edit->get_child_count() - 1; i >= 0; i--) {
|
||
|
GraphNode *graph_element = Object::cast_to<GraphNode>(graph_edit->get_child(i));
|
||
|
if (!graph_element) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
node_names[graph_element->get_name()] = graph_element;
|
||
|
|
||
|
if (graph_element->is_selected()) {
|
||
|
arrange_entire_graph = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
HashMap<StringName, HashSet<StringName>> upper_neighbours;
|
||
|
HashMap<StringName, Pair<int, int>> port_info;
|
||
|
Vector2 origin(FLT_MAX, FLT_MAX);
|
||
|
|
||
|
float gap_v = 100.0f;
|
||
|
float gap_h = 100.0f;
|
||
|
|
||
|
List<Ref<GraphEdit::Connection>> connection_list = graph_edit->get_connection_list();
|
||
|
|
||
|
for (int i = graph_edit->get_child_count() - 1; i >= 0; i--) {
|
||
|
GraphNode *graph_element = Object::cast_to<GraphNode>(graph_edit->get_child(i));
|
||
|
if (!graph_element) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (graph_element->is_selected() || arrange_entire_graph) {
|
||
|
selected_nodes.insert(graph_element->get_name());
|
||
|
HashSet<StringName> s;
|
||
|
|
||
|
for (const Ref<GraphEdit::Connection> &connection : connection_list) {
|
||
|
GraphNode *p_from = Object::cast_to<GraphNode>(node_names[connection->from_node]);
|
||
|
if (connection->to_node == graph_element->get_name() && (p_from->is_selected() || arrange_entire_graph) && connection->to_node != connection->from_node) {
|
||
|
if (!s.has(p_from->get_name())) {
|
||
|
s.insert(p_from->get_name());
|
||
|
}
|
||
|
String s_connection = String(p_from->get_name()) + " " + String(connection->to_node);
|
||
|
StringName _connection(s_connection);
|
||
|
Pair<int, int> ports(connection->from_port, connection->to_port);
|
||
|
port_info.insert(_connection, ports);
|
||
|
}
|
||
|
}
|
||
|
upper_neighbours.insert(graph_element->get_name(), s);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!selected_nodes.size()) {
|
||
|
arranging_graph = false;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
HashMap<int, Vector<StringName>> layers = _layering(selected_nodes, upper_neighbours);
|
||
|
_crossing_minimisation(layers, upper_neighbours);
|
||
|
|
||
|
Dictionary root, align, sink, shift;
|
||
|
_horizontal_alignment(root, align, layers, upper_neighbours, selected_nodes);
|
||
|
|
||
|
HashMap<StringName, Vector2> new_positions;
|
||
|
Vector2 default_position(FLT_MAX, FLT_MAX);
|
||
|
Dictionary inner_shift;
|
||
|
HashSet<StringName> block_heads;
|
||
|
|
||
|
for (const StringName &E : selected_nodes) {
|
||
|
inner_shift[E] = 0.0f;
|
||
|
sink[E] = E;
|
||
|
shift[E] = FLT_MAX;
|
||
|
new_positions.insert(E, default_position);
|
||
|
if ((StringName)root[E] == E) {
|
||
|
block_heads.insert(E);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_calculate_inner_shifts(inner_shift, root, node_names, align, block_heads, port_info);
|
||
|
|
||
|
for (const StringName &E : block_heads) {
|
||
|
_place_block(E, gap_v, layers, root, align, node_names, inner_shift, sink, shift, new_positions);
|
||
|
}
|
||
|
origin.y = Object::cast_to<GraphNode>(node_names[layers[0][0]])->get_position_offset().y - (new_positions[layers[0][0]].y + (float)inner_shift[layers[0][0]]);
|
||
|
origin.x = Object::cast_to<GraphNode>(node_names[layers[0][0]])->get_position_offset().x;
|
||
|
|
||
|
for (const StringName &E : block_heads) {
|
||
|
StringName u = E;
|
||
|
float start_from = origin.y + new_positions[E].y;
|
||
|
do {
|
||
|
Vector2 cal_pos;
|
||
|
cal_pos.y = start_from + (real_t)inner_shift[u];
|
||
|
new_positions.insert(u, cal_pos);
|
||
|
u = align[u];
|
||
|
} while (u != E);
|
||
|
}
|
||
|
|
||
|
// Compute horizontal coordinates individually for layers to get uniform gap.
|
||
|
float start_from = origin.x;
|
||
|
float largest_node_size = 0.0f;
|
||
|
|
||
|
for (unsigned int i = 0; i < layers.size(); i++) {
|
||
|
Vector<StringName> layer = layers[i];
|
||
|
for (int j = 0; j < layer.size(); j++) {
|
||
|
float current_node_size = Object::cast_to<GraphNode>(node_names[layer[j]])->get_size().x;
|
||
|
largest_node_size = MAX(largest_node_size, current_node_size);
|
||
|
}
|
||
|
|
||
|
for (int j = 0; j < layer.size(); j++) {
|
||
|
float current_node_size = Object::cast_to<GraphNode>(node_names[layer[j]])->get_size().x;
|
||
|
Vector2 cal_pos = new_positions[layer[j]];
|
||
|
|
||
|
if (current_node_size == largest_node_size) {
|
||
|
cal_pos.x = start_from;
|
||
|
} else {
|
||
|
float current_node_start_pos = start_from;
|
||
|
if (current_node_size < largest_node_size / 2) {
|
||
|
if (!(i || j)) {
|
||
|
start_from -= (largest_node_size - current_node_size);
|
||
|
}
|
||
|
current_node_start_pos = start_from + largest_node_size - current_node_size;
|
||
|
}
|
||
|
cal_pos.x = current_node_start_pos;
|
||
|
}
|
||
|
new_positions.insert(layer[j], cal_pos);
|
||
|
}
|
||
|
|
||
|
start_from += largest_node_size + gap_h;
|
||
|
largest_node_size = 0.0f;
|
||
|
}
|
||
|
|
||
|
graph_edit->emit_signal(SNAME("begin_node_move"));
|
||
|
for (const StringName &E : selected_nodes) {
|
||
|
GraphNode *graph_node = Object::cast_to<GraphNode>(node_names[E]);
|
||
|
graph_node->set_drag(true);
|
||
|
Vector2 pos = (new_positions[E]);
|
||
|
|
||
|
if (graph_edit->is_snapping_enabled()) {
|
||
|
float snapping_distance = graph_edit->get_snapping_distance();
|
||
|
pos = pos.snappedf(snapping_distance);
|
||
|
}
|
||
|
graph_node->set_position_offset(pos);
|
||
|
graph_node->set_drag(false);
|
||
|
}
|
||
|
graph_edit->emit_signal(SNAME("end_node_move"));
|
||
|
arranging_graph = false;
|
||
|
}
|
||
|
|
||
|
int GraphEditArranger::_set_operations(SET_OPERATIONS p_operation, HashSet<StringName> &r_u, const HashSet<StringName> &r_v) {
|
||
|
switch (p_operation) {
|
||
|
case GraphEditArranger::IS_EQUAL: {
|
||
|
for (const StringName &E : r_u) {
|
||
|
if (!r_v.has(E)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return r_u.size() == r_v.size();
|
||
|
} break;
|
||
|
case GraphEditArranger::IS_SUBSET: {
|
||
|
if (r_u.size() == r_v.size() && !r_u.size()) {
|
||
|
return 1;
|
||
|
}
|
||
|
for (const StringName &E : r_u) {
|
||
|
if (!r_v.has(E)) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
} break;
|
||
|
case GraphEditArranger::DIFFERENCE: {
|
||
|
Vector<StringName> common;
|
||
|
for (const StringName &E : r_u) {
|
||
|
if (r_v.has(E)) {
|
||
|
common.append(E);
|
||
|
}
|
||
|
}
|
||
|
for (const StringName &E : common) {
|
||
|
r_u.erase(E);
|
||
|
}
|
||
|
return r_u.size();
|
||
|
} break;
|
||
|
case GraphEditArranger::UNION: {
|
||
|
for (const StringName &E : r_v) {
|
||
|
if (!r_u.has(E)) {
|
||
|
r_u.insert(E);
|
||
|
}
|
||
|
}
|
||
|
return r_u.size();
|
||
|
} break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
HashMap<int, Vector<StringName>> GraphEditArranger::_layering(const HashSet<StringName> &r_selected_nodes, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours) {
|
||
|
HashMap<int, Vector<StringName>> l;
|
||
|
|
||
|
HashSet<StringName> p = r_selected_nodes, q = r_selected_nodes, u, z;
|
||
|
int current_layer = 0;
|
||
|
bool selected = false;
|
||
|
|
||
|
while (!_set_operations(GraphEditArranger::IS_EQUAL, q, u)) {
|
||
|
_set_operations(GraphEditArranger::DIFFERENCE, p, u);
|
||
|
for (const StringName &E : p) {
|
||
|
HashSet<StringName> n = r_upper_neighbours[E];
|
||
|
if (_set_operations(GraphEditArranger::IS_SUBSET, n, z)) {
|
||
|
Vector<StringName> t;
|
||
|
t.push_back(E);
|
||
|
if (!l.has(current_layer)) {
|
||
|
l.insert(current_layer, Vector<StringName>{});
|
||
|
}
|
||
|
selected = true;
|
||
|
t.append_array(l[current_layer]);
|
||
|
l.insert(current_layer, t);
|
||
|
u.insert(E);
|
||
|
}
|
||
|
}
|
||
|
if (!selected) {
|
||
|
current_layer++;
|
||
|
uint32_t previous_size_z = z.size();
|
||
|
_set_operations(GraphEditArranger::UNION, z, u);
|
||
|
if (z.size() == previous_size_z) {
|
||
|
WARN_PRINT("Graph contains cycle(s). The cycle(s) will not be rearranged accurately.");
|
||
|
Vector<StringName> t;
|
||
|
if (l.has(0)) {
|
||
|
t.append_array(l[0]);
|
||
|
}
|
||
|
for (const StringName &E : p) {
|
||
|
t.push_back(E);
|
||
|
}
|
||
|
l.insert(0, t);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
selected = false;
|
||
|
}
|
||
|
|
||
|
return l;
|
||
|
}
|
||
|
|
||
|
Vector<StringName> GraphEditArranger::_split(const Vector<StringName> &r_layer, const HashMap<StringName, Dictionary> &r_crossings) {
|
||
|
if (!r_layer.size()) {
|
||
|
return Vector<StringName>();
|
||
|
}
|
||
|
|
||
|
const StringName &p = r_layer[Math::random(0, r_layer.size() - 1)];
|
||
|
Vector<StringName> left;
|
||
|
Vector<StringName> right;
|
||
|
|
||
|
for (int i = 0; i < r_layer.size(); i++) {
|
||
|
if (p != r_layer[i]) {
|
||
|
const StringName &q = r_layer[i];
|
||
|
int cross_pq = r_crossings[p][q];
|
||
|
int cross_qp = r_crossings[q][p];
|
||
|
if (cross_pq > cross_qp) {
|
||
|
left.push_back(q);
|
||
|
} else {
|
||
|
right.push_back(q);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
left.push_back(p);
|
||
|
left.append_array(right);
|
||
|
return left;
|
||
|
}
|
||
|
|
||
|
void GraphEditArranger::_horizontal_alignment(Dictionary &r_root, Dictionary &r_align, const HashMap<int, Vector<StringName>> &r_layers, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours, const HashSet<StringName> &r_selected_nodes) {
|
||
|
for (const StringName &E : r_selected_nodes) {
|
||
|
r_root[E] = E;
|
||
|
r_align[E] = E;
|
||
|
}
|
||
|
|
||
|
if (r_layers.size() == 1) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 1; i < r_layers.size(); i++) {
|
||
|
Vector<StringName> lower_layer = r_layers[i];
|
||
|
Vector<StringName> upper_layer = r_layers[i - 1];
|
||
|
int r = -1;
|
||
|
|
||
|
for (int j = 0; j < lower_layer.size(); j++) {
|
||
|
Vector<Pair<int, StringName>> up;
|
||
|
const StringName ¤t_node = lower_layer[j];
|
||
|
for (int k = 0; k < upper_layer.size(); k++) {
|
||
|
const StringName &adjacent_neighbour = upper_layer[k];
|
||
|
if (r_upper_neighbours[current_node].has(adjacent_neighbour)) {
|
||
|
up.push_back(Pair<int, StringName>(k, adjacent_neighbour));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int start = (up.size() - 1) / 2;
|
||
|
int end = (up.size() - 1) % 2 ? start + 1 : start;
|
||
|
for (int p = start; p <= end; p++) {
|
||
|
StringName Align = r_align[current_node];
|
||
|
if (Align == current_node && r < up[p].first) {
|
||
|
r_align[up[p].second] = lower_layer[j];
|
||
|
r_root[current_node] = r_root[up[p].second];
|
||
|
r_align[current_node] = r_root[up[p].second];
|
||
|
r = up[p].first;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GraphEditArranger::_crossing_minimisation(HashMap<int, Vector<StringName>> &r_layers, const HashMap<StringName, HashSet<StringName>> &r_upper_neighbours) {
|
||
|
if (r_layers.size() == 1) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 1; i < r_layers.size(); i++) {
|
||
|
Vector<StringName> upper_layer = r_layers[i - 1];
|
||
|
Vector<StringName> lower_layer = r_layers[i];
|
||
|
HashMap<StringName, Dictionary> c;
|
||
|
|
||
|
for (int j = 0; j < lower_layer.size(); j++) {
|
||
|
const StringName &p = lower_layer[j];
|
||
|
Dictionary d;
|
||
|
|
||
|
for (int k = 0; k < lower_layer.size(); k++) {
|
||
|
unsigned int crossings = 0;
|
||
|
const StringName &q = lower_layer[k];
|
||
|
|
||
|
if (j != k) {
|
||
|
for (int h = 1; h < upper_layer.size(); h++) {
|
||
|
if (r_upper_neighbours[p].has(upper_layer[h])) {
|
||
|
for (int g = 0; g < h; g++) {
|
||
|
if (r_upper_neighbours[q].has(upper_layer[g])) {
|
||
|
crossings++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
d[q] = crossings;
|
||
|
}
|
||
|
c.insert(p, d);
|
||
|
}
|
||
|
|
||
|
r_layers.insert(i, _split(lower_layer, c));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GraphEditArranger::_calculate_inner_shifts(Dictionary &r_inner_shifts, const Dictionary &r_root, const Dictionary &r_node_names, const Dictionary &r_align, const HashSet<StringName> &r_block_heads, const HashMap<StringName, Pair<int, int>> &r_port_info) {
|
||
|
for (const StringName &E : r_block_heads) {
|
||
|
real_t left = 0;
|
||
|
StringName u = E;
|
||
|
StringName v = r_align[u];
|
||
|
while (u != v && (StringName)r_root[u] != v) {
|
||
|
String _connection = String(u) + " " + String(v);
|
||
|
|
||
|
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[u]);
|
||
|
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[v]);
|
||
|
|
||
|
Pair<int, int> ports = r_port_info[_connection];
|
||
|
int port_from = ports.first;
|
||
|
int port_to = ports.second;
|
||
|
|
||
|
Vector2 pos_from = gnode_from->get_output_port_position(port_from) * graph_edit->get_zoom();
|
||
|
Vector2 pos_to = gnode_to->get_input_port_position(port_to) * graph_edit->get_zoom();
|
||
|
|
||
|
real_t s = (real_t)r_inner_shifts[u] + (pos_from.y - pos_to.y) / graph_edit->get_zoom();
|
||
|
r_inner_shifts[v] = s;
|
||
|
left = MIN(left, s);
|
||
|
|
||
|
u = v;
|
||
|
v = (StringName)r_align[v];
|
||
|
}
|
||
|
|
||
|
u = E;
|
||
|
do {
|
||
|
r_inner_shifts[u] = (real_t)r_inner_shifts[u] - left;
|
||
|
u = (StringName)r_align[u];
|
||
|
} while (u != E);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float GraphEditArranger::_calculate_threshold(const StringName &p_v, const StringName &p_w, const Dictionary &r_node_names, const HashMap<int, Vector<StringName>> &r_layers, const Dictionary &r_root, const Dictionary &r_align, const Dictionary &r_inner_shift, real_t p_current_threshold, const HashMap<StringName, Vector2> &r_node_positions) {
|
||
|
#define MAX_ORDER 2147483647
|
||
|
#define ORDER(node, layers) \
|
||
|
for (unsigned int i = 0; i < layers.size(); i++) { \
|
||
|
int index = layers[i].find(node); \
|
||
|
if (index > 0) { \
|
||
|
order = index; \
|
||
|
break; \
|
||
|
} \
|
||
|
order = MAX_ORDER; \
|
||
|
}
|
||
|
|
||
|
int order = MAX_ORDER;
|
||
|
float threshold = p_current_threshold;
|
||
|
if (p_v == p_w) {
|
||
|
int min_order = MAX_ORDER;
|
||
|
Ref<GraphEdit::Connection> incoming;
|
||
|
List<Ref<GraphEdit::Connection>> connection_list = graph_edit->get_connection_list();
|
||
|
for (const Ref<GraphEdit::Connection> &connection : connection_list) {
|
||
|
if (connection->to_node == p_w) {
|
||
|
ORDER(connection->from_node, r_layers);
|
||
|
if (min_order > order) {
|
||
|
min_order = order;
|
||
|
incoming = connection;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (incoming.is_valid()) {
|
||
|
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[incoming->from_node]);
|
||
|
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[p_w]);
|
||
|
Vector2 pos_from = gnode_from->get_output_port_position(incoming->from_port) * graph_edit->get_zoom();
|
||
|
Vector2 pos_to = gnode_to->get_input_port_position(incoming->to_port) * graph_edit->get_zoom();
|
||
|
|
||
|
// If connected block node is selected, calculate thershold or add current block to list.
|
||
|
if (gnode_from->is_selected()) {
|
||
|
Vector2 connected_block_pos = r_node_positions[r_root[incoming->from_node]];
|
||
|
if (connected_block_pos.y != FLT_MAX) {
|
||
|
//Connected block is placed, calculate threshold.
|
||
|
threshold = connected_block_pos.y + (real_t)r_inner_shift[incoming->from_node] - (real_t)r_inner_shift[p_w] + pos_from.y - pos_to.y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (threshold == FLT_MIN && (StringName)r_align[p_w] == p_v) {
|
||
|
// This time, pick an outgoing edge and repeat as above!
|
||
|
int min_order = MAX_ORDER;
|
||
|
Ref<GraphEdit::Connection> outgoing;
|
||
|
List<Ref<GraphEdit::Connection>> connection_list = graph_edit->get_connection_list();
|
||
|
for (const Ref<GraphEdit::Connection> &connection : connection_list) {
|
||
|
if (connection->from_node == p_w) {
|
||
|
ORDER(connection->to_node, r_layers);
|
||
|
if (min_order > order) {
|
||
|
min_order = order;
|
||
|
outgoing = connection;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (outgoing.is_valid()) {
|
||
|
GraphNode *gnode_from = Object::cast_to<GraphNode>(r_node_names[p_w]);
|
||
|
GraphNode *gnode_to = Object::cast_to<GraphNode>(r_node_names[outgoing->to_node]);
|
||
|
Vector2 pos_from = gnode_from->get_output_port_position(outgoing->from_port) * graph_edit->get_zoom();
|
||
|
Vector2 pos_to = gnode_to->get_input_port_position(outgoing->to_port) * graph_edit->get_zoom();
|
||
|
|
||
|
// If connected block node is selected, calculate thershold or add current block to list.
|
||
|
if (gnode_to->is_selected()) {
|
||
|
Vector2 connected_block_pos = r_node_positions[r_root[outgoing->to_node]];
|
||
|
if (connected_block_pos.y != FLT_MAX) {
|
||
|
//Connected block is placed. Calculate threshold
|
||
|
threshold = connected_block_pos.y + (real_t)r_inner_shift[outgoing->to_node] - (real_t)r_inner_shift[p_w] + pos_from.y - pos_to.y;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#undef MAX_ORDER
|
||
|
#undef ORDER
|
||
|
return threshold;
|
||
|
}
|
||
|
|
||
|
void GraphEditArranger::_place_block(const StringName &p_v, float p_delta, const HashMap<int, Vector<StringName>> &r_layers, const Dictionary &r_root, const Dictionary &r_align, const Dictionary &r_node_name, const Dictionary &r_inner_shift, Dictionary &r_sink, Dictionary &r_shift, HashMap<StringName, Vector2> &r_node_positions) {
|
||
|
#define PRED(node, layers) \
|
||
|
for (unsigned int i = 0; i < layers.size(); i++) { \
|
||
|
int index = layers[i].find(node); \
|
||
|
if (index > 0) { \
|
||
|
predecessor = layers[i][index - 1]; \
|
||
|
break; \
|
||
|
} \
|
||
|
predecessor = StringName(); \
|
||
|
}
|
||
|
|
||
|
StringName predecessor;
|
||
|
StringName successor;
|
||
|
Vector2 pos = r_node_positions[p_v];
|
||
|
|
||
|
if (pos.y == FLT_MAX) {
|
||
|
pos.y = 0;
|
||
|
bool initial = false;
|
||
|
StringName w = p_v;
|
||
|
real_t threshold = FLT_MIN;
|
||
|
do {
|
||
|
PRED(w, r_layers);
|
||
|
if (predecessor != StringName()) {
|
||
|
StringName u = r_root[predecessor];
|
||
|
_place_block(u, p_delta, r_layers, r_root, r_align, r_node_name, r_inner_shift, r_sink, r_shift, r_node_positions);
|
||
|
threshold = _calculate_threshold(p_v, w, r_node_name, r_layers, r_root, r_align, r_inner_shift, threshold, r_node_positions);
|
||
|
if ((StringName)r_sink[p_v] == p_v) {
|
||
|
r_sink[p_v] = r_sink[u];
|
||
|
}
|
||
|
|
||
|
Vector2 predecessor_root_pos = r_node_positions[u];
|
||
|
Vector2 predecessor_node_size = Object::cast_to<GraphNode>(r_node_name[predecessor])->get_size();
|
||
|
if (r_sink[p_v] != r_sink[u]) {
|
||
|
real_t sc = pos.y + (real_t)r_inner_shift[w] - predecessor_root_pos.y - (real_t)r_inner_shift[predecessor] - predecessor_node_size.y - p_delta;
|
||
|
r_shift[r_sink[u]] = MIN(sc, (real_t)r_shift[r_sink[u]]);
|
||
|
} else {
|
||
|
real_t sb = predecessor_root_pos.y + (real_t)r_inner_shift[predecessor] + predecessor_node_size.y - (real_t)r_inner_shift[w] + p_delta;
|
||
|
sb = MAX(sb, threshold);
|
||
|
if (initial) {
|
||
|
pos.y = sb;
|
||
|
} else {
|
||
|
pos.y = MAX(pos.y, sb);
|
||
|
}
|
||
|
initial = false;
|
||
|
}
|
||
|
}
|
||
|
threshold = _calculate_threshold(p_v, w, r_node_name, r_layers, r_root, r_align, r_inner_shift, threshold, r_node_positions);
|
||
|
w = r_align[w];
|
||
|
} while (w != p_v);
|
||
|
r_node_positions.insert(p_v, pos);
|
||
|
}
|
||
|
|
||
|
#undef PRED
|
||
|
}
|